• 제목/요약/키워드: 은닉노드

검색결과 150건 처리시간 0.021초

신경망을 이용한 기상예측시스템에서 망구조 최적화를 위한 Pruning 알고리즘 (A Pruning Algorithm for Network Structure Optimization in the Forecasting Climate System Using Neural Network)

  • 이기준;강명아;정채영
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.385-391
    • /
    • 2000
  • 최근, 기존의 통계적 분석방법과는 달리 시계열 데이터를 이용하여 미래의 연속적인 지배의 법칙을 예측하기 위한 신경회로망 연구가 진행되고 있다. 본 논문에서는 빠르고 정확한 기상예측을 위하여 초기 임의 설계된 신경회로망의 은닉층중과(過)설계된 은닉노드를 제거하는 Pruning 알고리즘을 제안하며, 이 제안한 알고리즘의 효율성을 증명하기 위하여 1987년부터 1996년까지의 수집된 기상 데이터 22080건을 이용하여 기상예측 실험을 실행하였다. 실험을 통하여 초기 임의 구성된 $26{\times}50{\times}1$의 신경망은 제안된 pruning 알고리즘을 통하여 $26{\times}2{\times}1$ 구조로 최적화 되었고, 최적화된 신경망($26{\times}2{\times}1$)의 경우 오차온도 ${\pm}0.5^{\circ}C$의 경우 평균 33.55%, ${\pm}1^{\circ}C$의 경우 61.57%로 임의 설계된 구조 ($26{\times}50{\times}1$)dml 29.31%, 54.47%에 비하여 우수하게 나타났고, 또한 계산 횟수에서도 임의 구성 신경망에 비하여 최고 25배이상 계산횟수를 줄일 수 있었다.

  • PDF

다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축 (Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents)

  • 장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

R과 텐서플로우 딥러닝 성능 비교 (A Deep Learning Performance Comparison of R and Tensorflow)

  • 장성봉
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.487-494
    • /
    • 2023
  • 본 연구에서는 무료 딥러닝 도구인 R과 텐서플로우에 대한 성능 비교를 수행하였다. 실험에서는 각 도구를 사용하여 6종류의 심층 신경망을 구축하고 10년간의 한국 온도 데이터셋을 사용하여 신경망을 학습시켰다. 구축된 신경망의 입력층 노드 갯수는 10개, 출력층은 5개로 설정 하였으며, 은닉층은 5, 10, 20개로 설정하여 실험을 진행 하였다. 학습 데이터는 2013년 3월 1일부터 2023년 3월 29일까지 서울시 강남구에서 수집된 온도 데이터 3681건을 사용하였다. 성능 비교를 위해, 학습된 신경망을 사용하여, 5일간의 온도를 예측하고 예측된 값과 실제값을 사용하여 평균 제곱근 오차(root mean square error, RMSE)값을 측정하였다. 실험결과, 은닉층이 1개인 경우, R의 학습 오차는 0.04731176이었으며, 텐서플로우는 0.06677193으로 측정되었으며, 은닉층이 2개인 경우에는 R이 0.04782134, 텐서플로 우는 0.05799060로 측정되었다. 전체적으로 R이 더 우수한 성능을 보였다. 우리는 기계학습을 처음 접하는 사용자들에게 두 도구에 대한 정량적 성능 정보를 제공함으로써, 도구 선택에서 발생하는 어려움을 해소하고자 하였다.

무선 센서 네트워크에서의 통신 근원지 및 도착지 은닉(제2부) : 프로토콜 평가 (Concealing Communication Source and Destination in Wireless Sensor Networks (Part I) : Protocol Evaluation)

  • 차영환
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.379-387
    • /
    • 2013
  • 대규모 무선 센서 네트워크에 있어서 광역도청에 대응하여 통신 근원지와 도착지의 위치기밀을 유지하기 위해서는 흔히 과다한 더미패킷들이 발생된다. 앞서의 연구에서는 데이터패킷 전송 동안에 근원지와 도착지를 포함하는 일정 범위 내의 노드들만이 빈 타임-슬롯마다 더미패킷을 발생하도록 하는 위치보안 라우팅 프로토콜 ELPR(End-node Location Privacy Routing)을 제안하였다. 이 논문에서는 고정된 보안성을 갖는 PCM(Periodic Collection Method)에 비해 ELPR은 다양한 위치보안 수준을 제공함을 보였다. 시뮬레이션을 통해 ELPR은 노드들의 수나 데이터패킷들이 많은 경우, PCM보다 발생 패킷 수에 있어서 경제성 있는 위치보안이 가능함을 확인하였다.

스케일링-웨이블릿 혼합 신경회로망 구조 설계 (Design the Structure of Scaling-Wavelet Mixed Neural Network)

  • 김성주;김용택;서재홍;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.511-516
    • /
    • 2002
  • 신경회로망은 차원이 확장됨에 따라 학습에 필요한 계산량이 기학급수적으로 증가하는 문제가 발생한다. 이를 극복하기 위해 직교성을 지닌 웨이블릿 신경회로망이 제안되었다. 웨이블릿 함수의 경우 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 함께 은닉층의 노드로 복합 구성함으로써 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 구성하는 복합 신경회로망을 제안한다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정한다.

하이브리드 드롭아웃 (Hybrid dropout)

  • 박종선;이명규
    • 응용통계연구
    • /
    • 제32권6호
    • /
    • pp.899-908
    • /
    • 2019
  • 수 많은 모수들을 가지고 있는 방대한 심층신경망은 매우 강력한 기계학습 방법이지만 모형의 과도한 융통성으로 인하여 과적합문제를 내포하고 있다. 드롭아웃 방법은 크기가 큰 신경망의 과적합 문제를 해결하는 다양한 방법들 중 하나이며 매우 효과적인 방법으로 알려져 있다. 드롭아웃 방법은 훈련과정에서 각각의 표본에 다른 모형을 적용하는데 이들 모형은 입력과 은닉층의 노드들을 무작위로 제거한 모형들 중에 임의로 선택된다. 본 연구에서는 임의로 선택된 모형에 둘 이상의 표본을 적용하여 모형의 가중치들에 대한 추정치의 안정성을 높이는 하이브리드 드롭아웃 방법을 제시하였다. 실제 자료를 이용한 시뮬레이션 결과 노드의 선택확률과 모형의 적합에 사용되는 표본의 수를 적절하게 선택하여 기존의 방법에 비하여 추정치의 변동성이 감소시킬 수 있었으며 동시에 검증자료에 대한 최저오차도 줄일 수 있음을 보였다.

단기 하천수질 예측을 위한 신경망모형 (Artificial Neural Networks for Forecasting of Short-term River Water Quality)

  • 김만식;한재석
    • 한국지반환경공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.11-17
    • /
    • 2002
  • 본 논문의 목적은 섬진다목적댐 유역의 하천을 대상으로 강우시에 단기 수질상태를 예측하기 위하여 병렬다중결선의 계층구조를 갖는 신경망이론을 이용하였다. 본 연구에 적용한 신경망이론의 학습알고리즘으로는 역전파알고리즘을 사용하였으며, 최적모형의 개발을 위해 모멘트법-적응학습율기법을 이용하였다. 하천 수질오염 부하량에 영향을 미치는 요소로서 상류로부터 유입되는 유입량과 수질인자인 BOD, COD, SS를 고려하였다. 섬진다목적댐 유역에 대해 단기 수질을 예측할 수 있는 다층신경망모형을 개발하기 위해 은닉층 노드수와 학습회수에 변화를 주어 각 수질인자별로 4가지씩 총 12개의 모형을 구성하여 학습을 실시하였다. 제안된 신경망모형의 검증을 위해 학습시키지 않은 수질자료를 예측한 결과 양호한 것으로 분석되었고, 하천수계의 단기 수질오염 예측에 활용할 수 있을 것으로 사료되었다.

  • PDF

초음파-토양수세법을 이용한 오염지반 복원률증대에 인공신경망의 적용 (Application of Artificial Neural Networks(ANN) to Ultrasonically Enhanced Soil Flushing of Contaminated Soils)

  • 황명기;김지형;김영욱
    • 한국지반공학회논문집
    • /
    • 제19권6호
    • /
    • pp.343-350
    • /
    • 2003
  • 인공신경망(Artificial Neural Network, ANN) 해석기술을 지반공학 분야에서 활용하는 경우가 점점 다양해지고 있다. 이 연구에서는 초음파에 의해 증가된 토양수세법의 효율성을 해석하는 모델개발에 인공신경망기법을 적용하였다. 실내시험을 통하여 인공신경망을 위한 입력자료를 확보한 뒤 이를 이용하여 모델을 학습시킨 후 모델검증을 실시하였다. 해석 변수, 즉 모멘텀항, 학습률, 전이함수 종류, 은닉층 수 및 노드 수 등을 달리하여 연구를 수행하였으며 최적의 조건을 도출한 후 개발된 모델의 검증을 실시하였다. 개발된 모델의 검증결과 측정값과 예측값의 상관관계가 매우 높게 나타났으며 이를 통하여 수학적 모델 수립이 곤란한 토양수세 초음파 기법의 전반적인 고찰의 기초를 확립하였다.

음성인식을 위한 분산개념을 자율조직하는 신경회로망시스템 (A Neural Net System Self-organizing the Distributed Concepts for Speech Recognition)

  • 김성석;이태호
    • 대한전자공학회논문지
    • /
    • 제26권5호
    • /
    • pp.85-91
    • /
    • 1989
  • 본 연구에서는 자기지도 BP 신경회로망의 은닉노드상의 활성패턴을 음성패턴의 분산표현된 개념으로 설정하고, 이 분산개념을 T.Kohonen의 자율조직 신경회로망(SOFM)의 입력특징으로 하는 복합적 회로망을 제안한다. 이렇게 함으로써 통상의 BP 신경망의 교육에 관련된 어려움과 패턴정합기로 떨어지는 약점을 해소하는 동시에 의미있고 다양한 내부표현을 추출해 낼 수 있다는 강점을 활용할 수 있고, SOFM의 강력한 판단기능을 이용하여 보다 구조적이고 의미있는 개념맵의 배열을 얻을 수 있게 되었다. 결과적으로 전처리가 불필요하고 자기교육이 가능한 독자적인 인식시스템이 구성된다.

  • PDF

보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법 (A Design Method for Error Backpropagation neural networks using Voronoi Diagram)

  • 김홍기
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.490-495
    • /
    • 1999
  • 본 논문에서는 보로노이 다이아그램을 이용하여 오류 역전파 신경망의 초기값을 결정할수 있는 VoD_EBP를 제안하였다. VoD_EBP는 초기 연결 가중치와 임계값을 공학적 계산방법으로 결정함으로써 기존의 EBP에서 자주 발생하는 학습 마비 현상을 피할수 있고 초기부터 빠른 속도로 학습이 진행되므로 학습횟수를 단축시킬수 있다, 또한 VoD_EBP는 은닉층의 노드 수를 보로노이 다각형으로 구분된 클러스터들의 개수로 정할 수있어 신경망 설계에 신뢰성을 향상시켰다. 제시된 VoD_EBP의 효율성을 입증하기 위해 간단한 실험으로 2차원 입력벡터를 갖는 XOR 문제와 3차원 패리티 코드 검출 문제에 대하여 적용하여 보았다. 그 결과 임의의 초기값으로 설정하였던 EBP보다 훨씬 빠르게 학습이 종료되었고, 지역 최소치에 빠져 학습이 진행되지 못하는 현상이 발생하지 않았다.

  • PDF