• Title/Summary/Keyword: 융합적 문제해결력

Search Result 165, Processing Time 0.027 seconds

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.

A Meta-Analysis on the Effects of Integrated Education Research (통합교육의 효과에 대한 메타분석)

  • Kim, Jiyoung;Park, Eunmi;Park, Jieun;Bang, Dami;Lee, Yoonha;Yoon, Heojoeng
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.403-417
    • /
    • 2015
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last three years, the relevant 161 research articles were selected, and 236 effect sizes were calculated. Effect sizes were analyzed with different dependant variables including creativity, problem solving ability, academic achievement, inquiry skills, creative personality, scientific attitude, and interests. In addition, effect sizes with different moderating variables, such as characteristics of subjects, sample sizes, class types, core disciplines and publication types, were compared. The results are as follows: The overall effect size of integrated education program produced a huge effect (effect size=0.88, U3=81.06%). Integrated education program showed the highest effect size on scientific attitude among other dependant variables. However, all of the other dependant variables represented more than medium size effect size. Integrated program proved to be more effective on kindergarten pupils and gifted students compared to other school levels and regular students. The effect size for group of less then thirty students were larger than other groups. Programs implemented in after school hours were more effective than in regular school hours. Considering the core subject of program, arts-centered integrated programs showed the largest effect size, while all the others showed above medium effect sizes. Finally, doctoral dissertation showed the highest effect size compared to master's thesis and academic journal articles. Conclusions and recommendations for further research were provided.

A Study on Constituents of the New Apprenticeship Concept for the Promotion of Industrial Growth Potential (산업 성장잠재력 제고를 위한 신도제제도의 개념 요소에 대한 연구)

  • Yin, Zi Long;Rho, Tae Chun;Choi, Won Sik
    • 대한공업교육학회지
    • /
    • v.38 no.1
    • /
    • pp.1-27
    • /
    • 2013
  • The purpose of this study was to find out the areas and their constitute elements of new apprenticeship through the expert of vocational education to improve the growth potential in the field of industry. Through the three times Delphi research process final composing areas and elements(total 6 areas and 41 sub-elements) of new apprenticeship were extracted. Followings are specific study results of 41 sub-elements for the 6 areas. In area A(Technology Skill aspect) total nine sub-elements were deducted as follows. Technology skill's field appling ability, new technology skill's acquisition, quality assurance ability, research development ability, material management using ability, problem solving ability, core technology skill understanding ability, idea's imagery expressing ability, creative design ability. In area B(Institutional aspect) total five sub-elements were deducted as follows. Flexible human material support, precise division of works, objective result assessment, institutionalization of responsibilities and liabilities between teacher and student, institutionalization of duty invention reward. In area C(Affective aspect) total eight sub-elements were deducted as follows. Manners and cooperation between teacher & student and peer, values for job, basic attitude for technology, job ethic sense, respect of other organization, active action to organization change, attitude of technology successor, service mind. In area D(Self-improvement aspect) total nine sub-elements were deducted as follows. Self evaluation and reflection, cultivate of organization understanding, career planning and developing ability, sound philosophy of life, communication ability, decision making ability, prepare of individual competence enhance system, self-control ability improvement, reaction of unexpected situation. In area E(Knowledge aspect) total four sub-elements were deducted as follows. Basic knowledge of relevant area, knowledge of new technology & preceding technology, fusion and relocation of knowledge, practical knowledge. In area F(Environmental aspect) total six sub-elements were deducted as follows. Awareness of business environment, understanding of education and practice environment, understanding of apprenticeship's business demand, connectivity of region community, adapt ability of labor market's change, awareness of society environment change.

Capabilities Required for Underground Facility Operations in Korean Megacities (한국 메가시티 지하시설 작전에 요구되는 능력)

  • Jun Hak Sim;Seung Jin Jo;Jun Woo Kim;Ji Woong Choi;Won Jun Choi;Sun Il Yang;Sang Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.267-272
    • /
    • 2024
  • Recently, major advanced countries are fostering megacities through policy for reasons such as solving population problems, political and economic issues, and strengthening national competitiveness. The trend of change is accelerating. In Korea, following Seoul and Gyeonggi, mega city policies are being promoted in Busan, Ulsan, Gyeongnam, Daegu and Gyeongbuk, Gwangju and Jeonnam, and Daejeon, Sejong, South Chungcheong and North Chungcheong areas. Due to this urbanization phenomenon, military experts predict that the future battlefield environment will be space or a large city (mega city). From this perspective, Korea will not be able to effectively respond to the threats facing megacities if it does not prepare in advance. Therefore, underground facility operation capabilities optimized for the huge scale of the mega city and the characteristics of the underground operational environment are required. Against this background, the characteristics of the underground operational environment of mega cities and cases of preparation for underground facility operations in advanced military countries such as the United States and Israel were analyzed. Based on this, the capabilities required for underground facility operations suitable for the underground operational environment within Korean megacities are developed from an idea perspective to military organization and combat system, securing special equipment and materials to ensure combatant survival, developing small unit combat techniques, and establishing a training system. It was presented with priority given to.