• Title/Summary/Keyword: 융기사

Search Result 24, Processing Time 0.026 seconds

Thermal and Uplift Histories of the Jurassic Granite Batholith in Southern Jeonju: Fission-track Thermochronological Analyses (전주 남부지역 쥬라기 화강암질 저반체의 지열사와 융기사: 피션트랙 열연대학적 해석)

  • Shin, Seong-Cheon
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.389-410
    • /
    • 2016
  • Wide ranges of fission-track (FT) ages were obtained from the Jurassic granite batholith in Jeonju-Gimje-Jeongeup area, southwestern Okcheon Belt: sphene=158~70 Ma; zircon=127~71 Ma; apatite=72~46 Ma. Thermochronological analyses based on undisturbed primary cooling and reset or partially-reduced FT ages, and some track-length data reveal complicated thermal histories of the granite. The overall cooling of the batholith is characterized by a relatively rapid earlier-cooling (${\sim}20^{\circ}/Ma$) to $300^{\circ}C$ isotherm since its crystallization and a very slow later-cooling ($2.0{\sim}1.5^{\circ}/Ma$) through the $300^{\circ}C-200^{\circ}C-100^{\circ}C$ isotherms to the present surface temperature. It is indicated that the large part of Jurassic granitic body experienced different level of elevated temperatures at least above $170^{\circ}C$ (maximum>$330^{\circ}C$) by a series of igneous activities in late Cretaceous. Consistent FT zircon ages from duplicate measurements for two sites of later igneous bodies define their formation ages: e.g., quartz porphyry=$73{\pm}3Ma$; diorite=$73{\pm}2Ma$; rhyolite=$72{\pm}3Ma$; feldspar porphyry=$78{\pm}4Ma$ (total weighted average=$73{\pm}3Ma$). Intrusions of these later igneous bodies and pegmatitic dyke swarms might play important roles in later thermal rise over the study area including hot-spring districts (e.g., Hwasim, Jukrim, Mogyokri, Hoebong etc.). On the basis of an assumption that the latercooling of granite batholith was essentially controlled by the denudation of overlying crust, the uplift since early Cretaceous was very slow with a mean rate of ~0.05 mm/year (i.e., ~50 m/Ma). Estimates of total uplifts since 100 Ma, 70 Ma and 40 Ma to present-day are ~5 km, ~3.5 km and ~2 km, respectively. The consistent values of total uplifts from different locations may suggest a regional plateau uplift with a uniform rate over the whole granitic body.

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.

Ultrastructure of the Fertilized Egg Envelope from Hyphessobrycon serpae, Characidae, Teleost (경골어류 카라신과 Hyphessobrycon serpae의 수정란 난막 미세구조)

  • Kim, Dong-Heui;Deung, Young-Kun;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.35 no.2
    • /
    • pp.89-96
    • /
    • 2005
  • The ultrastructures of the fertilized egg envelope from Hyphessobrycon serpae belonging to Characidae was studied using scanning and transmission electron microscopes to get systematic fundamental data for classification of species and to confirm whether micropyle is a common trait of Characidae or not. The fertilized egg was of colorless, transparent, spherical, adhesive and demersal type. There were not oil droplets in vitelline membrane and attached structures in the outside of fertilize egg envelope. The egg envelope had a single micropyle resembling the pathway of sperm in the area of the animal pole. The micropyle was surrounded by 13 to 15 protruded lines of the egg envelope in a radiated form. The outer surface of fertilized egg envelope was covered by reticular adhesive fibrous structures and irregularly arranged by pore canals. The fertilized egg envelope consisted of three distinct layers an outer adhesive fibrous layer with high electron density, a middle layer with pore canals, and an inner layer consisting of 6 to 7 lamellae alternating layers with interlamellae of lower electron density. These ultrastructural characters of fertilized egg envelope form Hyphessobrycon serpae can be utilized in taxonomy of teleost, and as fundamental data for study on early development of fertilized egg. It seems that the morphology of micropyle is a common trait of Characidae

The Coastal Geomorphic System of Sagye, Jeju (제주 사계해안의 지형시스템)

  • Seo, Jong-Cheol;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2007
  • In Sagye coast of Andeok-myeon, southwestern Jeju, shore platform of noncohesive Hamori Formation, marine terrace deposit of round gravels, coastal dune composed of shell sand and volcanic sand, and back lake are linked closely with each other. In this paper, the formation process of Sagye coastal geomorphic system analysed by using OSL dating method is as follows: Firstly, Hamori Formation is a horizontal stratum filed up of tuff reworked by submarine volcanic eruption during 3$\sim$7.6 ka BP. Hollow at the boundary between Hamori Formation' flat and Kwangheak Basalt's gentle slope become a back lake when block is appeared over the sea level by uplift. Secondly, while Hamori Formation was laid below sea level, gravels which had been broken and abraded at southwestern rocky coast composed of Kwangheak basalt or been transported through the small stream from adjacent hillslope were deposited in rapid flow environment. Thirdly, deposition of round gravels was ceased by earth uplift, and shore platform was constructed by abrasion process of energy of swash moving forward. As altitude of shore platform is equal to high tidal level of spring tide, compared it with present high tidal level of study area, earth is uplifted about 105m since shore platform was formed. Fourthly, much sandy sediments transported from offshore bottom covered shore platforms and marine terrace deposits. Lighter sediments among sandy sediments was blown to back, formed secondary sand dune since about 500 year.

  • PDF

A study on upper extremity muscle fatigue changes of train driver (기관사 상지 근육의 피로도 변화에 대한 연구)

  • Jang, Hye-Yoen;Lee, Yung-Gi;Jang, Jae-Ho;Kim, Tae-Sik;Hong, Sung-Jun;Han, Chang-Soo;Han, Jung-Soo;Ahn, Jae-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.576-581
    • /
    • 2007
  • The purpose of this study is to investigate changes in the forearm-muscle fatigue of a train driver operating the MasCon by using EMG (electromyogram) measurement technique. Train drivers usually use their forearm 4hours/day for normal operation. Accordingly, few different EMG signals of deltoid, biceps brachii, brachioradialis, flexor carpi ulnaris muscle of upper extremity have been measured and analyzed. The raw EMG Signals have been converted into median frequency using spectrum analysis. As the result, 80% of 10 subjects (real train drivers) showed that median frequency value of all four muscles has been reduced after 30 minutes of train operation. This results demonstrated that operating MasCon for 30 minutes could induce muscle fatigue.

Researches on fluvial terraces in Korea (한국의 하안단구 연구)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.17-33
    • /
    • 2011
  • This study summarizes the research history of fluvial terraces in Korea and examines the geomorphic properties of fluvial terraces in Korea based on the previous works. The research history of fluvial terraces in Korea can be divided into the three periods. The theories of fluvial terraces were spread by the early geomorphologists during the period of Japanese colonial era to mid-1980s. The dissertations on the fluvial terraces were intensively published during the late 1980s to 1990s and their discussions were the center of geomorphology researches in Korea. Since 2000s, the discussions have become more mature and researches have been quantitatively increased as the various methodologies have been developed. The fluvial terraces in Korea are mostly developed in the western and eastern parts of the Taebaek Mountains, upper and middle reaches of Han and Nakdong River, and in the western slopes of Sobaek Mountains, middle reaches of Namhan River, upper and middle reaches of Geum and Seomjin River. Along these rivers in actively uplifted areas, fluvial terraces with much higher altitude from riverbed are observable and incision rates are relatively high. In the sense of the formation ages, they have developed in not regular patterns by the climatic changes during the Quaternary, but in more complicated aspects by the environmental conditions such as climate, hydrology, geology and geomorphology in the specific drainage basins.

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (I) : The Identification Mountain Ranges using a DEM and Reconsideration of Current Issues on Mountain Range Maps (한국 산맥론(I) : DEM을 이용한 산맥의 확인과 현행 산맥도의 문제점 및 대안의 모색)

  • Park Soo Jin;SON ILL
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.1 s.106
    • /
    • pp.126-152
    • /
    • 2005
  • In recent years, there are some confusions related to the definition and existence of mountain ranges, which have been described in current geography text books. We contend that these confusions came from the lack of understanding on the geomorphological processes that form the mountain system in Korea. This research attempts to clarify the definition of mountain ranges and offer geological and geomorphological explanations about the formation of them. Based on the analyses of the social and cultural causes underlying the recent debates on the existence of mountain ranges, we tried to identify the relationships among the definition of mountain ranges, geological structure of Korea, and the forming processes of mountain ranges. The current and past mountain range maps were compared with geological structures, geological maps, surface curvature, and hill shade maps. The latter two maps were derived from a Digital Elevation Model of the Korean Peninsular. The results show that we are able to prove the existence of most mountain ranges, which provides a useful framework to understand the geological evolution of Korean peninsular and formation of mountainous landscape of Korea. In terms of their morphological continuity and genesis, however, we identified five different categories of mountain ranges: 1) Uplift mountain ranges(Hamkyeong Sanmaek, Nangrim Sanmaek, Taebaek Sanmaek), which were formed by the uplift processes of the Korean Peninsular during the Tertiary; 2) Falut mountain ranges(Macheonryeong Sanmaek, Sobaek Sanmaek, Buksubaek Sanmaek), whirh were directly related to the uplift processes of the Korean Peninsular during the Tertiary; 3) Trust mountain ranges(Jekyouryeong Sanmaek, Kwangju Sanmaek, Charyeong Sanmaek, Noryeong Sanmaek), which were formed by the intrusion of granite and consequent orogenic processes during the Mesozoic era; 4) Drainage divide type mountain ranges, which were formed by the erosion processes after the uplift of Korean Peninsular; 5) Cross-drainage basin type mountain ranges (Kangnam Sanmaek, Eunjin Sanmaek, Myelak sanmaek), which were also formed by the erosion processes, but the mountain ranges cross several drainage basins as connecting mountains laterally We believe that the current social confusions related to the existence of mountain ranges has partly been caused by the vague definition of mountain ranges and the diversity of the forming processes. In order to overcome theses confusions, it is necessary to characterize the types of them according the genesis, the purpose of usages and also the scale of maps which will explains the mountain systems. It is also necessary to provide appropriate educational materials to increase the general public's awareness and understanding of geomorphological processes.

Feldspar Diagenesis and Reseuoir History of the Miocene Temblor Formation, Kettleman North Dome, California, U.S.A. (미국 캘리포니아주 케틀만 노스돔의 마이오세 템블러층에서 장석의 속성작용과 저류암의 발달사)

  • Lee Yong Il;Boles James R.
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.16-27
    • /
    • 1995
  • The Early Miocene Temblor Formation forms an important sandstone reservoir at Kettleman North Dome oil field, California. Sandstones are mostly arkosic in composition except deepest sandstones containing much volcanic rock fragments. Arranged in paragenetic sequence prior to feldspar alteration, the Temblor sandstones contain cements of early calcite, dolomite, quartz, albite, mixed-layer ohloriteismectite (C/S) and smectite, and anhydrite. Diagenetic changes associated with feldspar are albitization of plagioclase, late calcite and laumontite cementation and grain replacement, plagioclase dissolution, and kaolinite cementation. Plagioclase albitization and late calcite and laumontite cementation in Temblor sandstones occurred at the time of maximum burial with temperatures up to $130^{\circ}C$. Volcanic plagioclases were selectively albitized. Most diagenetic changes are interpreted to have occurred before the maior uplift which occurred within the last one million years ago. Since then to the time of hydrocarbon emplacement plagioclase dissolution and kaolinite cementation occurred. This reaction occurred in relatively closed system due to the occurrence of kaolinite next to the site of plagioclase dissolution. Unaltered part of volcanic plagioclase and plutonic plagioclase which escaped albitization during maximum burial were preferentially dissolved to make plagioclase porosity. Secondary porosity resulting from dissolution of plagioclase and carbonate and anhydrite cements was mainly produced by formation waters containing organic acids released during atagenesis of organic matter.

  • PDF

Slope Movement Detection using Ubiquitous Sensor Network (USN을 이용한 사면거동 탐지)

  • Chang, K.T.;Ho, Albert;Jung, Chun-Suk;Jung, Hoon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • More than 70% of Korea consists of mountainous area and during the construction of roads and railroads many cut-slopes are inevitably formed. A number of environmental factors, such as the rainy season and frost heave during winter/thaw during spring, can result in rock falls and landslides. The failure of slopes is increasing every year and can cause damage to vehicles, personal injury and even fatality. In order to help protect people and property, there is a need for real-time monitoring systems to detect the early stages of slope failures. In this respect, the GMG has been using Translation Rotation Settlement (TRS) sensor units installed on slopes to monitor movement in real-time. However, the data lines of this system are vulnerable and the whole system can be damaged by a single lightning strike. In order to overcome this, GMG have proposed the use of Ubiquitous Sensor Networks (USN). The adoption of a USN system in lieu of data cables can help to minimize the risk of lightning damage and improve the reliability of slope monitoring systems.

  • PDF