본 논문에서는 물체가 가지고 있는 다양한 형태의 직선 외형을 검출하기 위한 효율적인 알고리즘을 제안한다. 직선 외형의 검출은 물체를 인식하거나 물체에 대한 필요 정보를 취득하고자 할 때 기본적으로 활용될 수 있는 핵심적인 알고리즘이다. 제안하는 알고리즘에서는 이진화된 입력 영상에 대하여 수직 프로젝션을 수행하여 관심영역을 추정한다. 이후 관심 영역 내 주요 경계점 들 간의 적합한 변위를 계산하고 이를 통하여 효율적인 직선 외형을 검출하고자 하였다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.2
/
pp.162-171
/
1991
This paper presents an algorithm for compressing image data by separating the image into two parts. I.e. edge image containing high-frequency components and non-edge image containing low-frequency components of image. The edge image is extracted by using 8 level compass gradient masks and the non-edge image is obtained by removing the edge image from the original image. The edge image is coded by Huffman run-length code and the non edge image is transformed first by DCT and the transformed images is coded next by a quantized bit allocation table. For an example image. GIRL. the proposed algorithm shows bit rate of 0.52 bpp with PSNR of 36dB.
The Journal of Korean Institute of Communications and Information Sciences
/
v.12
no.5
/
pp.415-427
/
1987
This paper presents an experimental model-based vision system which can identify and locate objects in scenes containing multiple occluded parts. The objects are assumed to be rigid and planar parts. In any recognition system the-type of objects that might appear in the image dictates the type of knowledge that is needed to recognize the object. The data is reduced to a sequential list of points or pixels that appear on the boundary of the objects. Next the boundary of the objects is smoothed using a polygonal approximation algorithm. Recognition cosists in finding the prototype that matches model to image. Now the hidden edge is reconstructed by transition model objects into occluded objects. The best match is obtained by optimising some similarity measure.
The fishing industry requires many workers to manually carry out the jobs of sorting and cutting fishes. There are therefore many dangerous situations in their working environment and the throughput is inefficiently low. This paper introduces an automatic fin cutting system based on RANSAC that is able to increase the throughput of fish processing jobs. The system proposed in this paper first detects the edges of a fish using a high-pass filter. The boundary lines between fin and body are then detected by adjusting parameters and the threshold of the noise filters. Finally, the optimal cutting lines are detected using RANSAC. Through an experiment with a sample of 50 fishes, this paper shows that the proposed system detects the cutting lines with about 90% accuracy.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.10
/
pp.156-165
/
1998
In this paper, the hybrid algorithm for the scene change detection of MPEG-based compressed video data is proposed. There have been two methods to detect scene changes of video data compressed using algorithms such as MPEG or motion-JPEG: analyzing the compressed data directly, and analyzing from the retrieved data. The former has the advantage of taking less time, while the latter can obtain detail results at the expense of time and memory. Thus by combining each algorithm we detect cuts from compressed sequence, retrieve data for some selected region, and detect gradual scene changes. Simulation results verify the superiorities of the proposed algorithm in analyzing time and accuracy.
Motion detection algorithms based on difference image are classified into background subtraction and previous frame subtraction. 1) Background subtraction is a convenient and effective method for detecting foreground objects in a stationary background. However in real world scenarios, especially outdoors, this restriction, (i.e., stationary background) often turns out to be impractical since the background may not be stable. 2) Previous frame subtraction is a simple technique for detecting motion in an image. The difference between two frames depends upon the amount of motion that occurs from one frame to the next. Both these straightforward methods fail when the object moves very "slightly and slowly". In order to efficiently deal with the problem, in this paper we present an algorithm for motion detection that incorporates "reflected light area" and "difference image". This reflected light area is generated during the frame production process. It processes multiplex difference image and AND-arithmetic of bitwise. This process incorporates the accuracy of background subtraction and environmental adaptability of previous frame subtraction and reduces noise generation. Also, the performance of the proposed method is demonstrated by the performance assessment of each method using Gait database sample of CASIA.
본 논문에서는 Active Contour 기반의 영역 분할에서 이미지의 초점값을 이용하여 분할된 영역 사이의 경계를 생성하여 기존의 Active Contour에서 발생할 수 있는 중첩 객체의 동일 객체 인식을 방지하는 기법을 제안한다. Active Contour는 영상에서 객체의 윤곽을 검출하여 윤곽을 기준으로 영상을 분할하지만 중첩되거나 근접한 객체에서의 분할이 정확하게 이루어지지 않아 동일 객체로 인식하는 단점이 있다. 이러한 객체에서의 분할을 위해 영상의 초점값을 이용하여 영상 내에 존재하는 객체의 유사 경계 영역을 생성하고 Active Contour의 결과에 적용하여 경계를 생성한 뒤 초점값 적용으로 인해 생성될 수 있는 홀 영역을 hole filling 과정을 수행하여 보완함으로써 보다 정확한 객체를 추출하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.583-585
/
2002
얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.
Kim, Do-Kwan;Shi, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won;Park, Ki-Hong
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.107-108
/
2016
Our study proposes the methods of distinguishing vehicle types using the interval and size of the car. The car videos converts the basic RGB model to Gray model for use and through Canny Edge Direction, it eliminates the background of the car while obtaining feature points through the detection of contours.
2D/3D 입체영상의 변환을 위해 산업현장에서 아티스트가 경험적으로 양자화된 깊이 정보를 제작하고, 입력된 깊이 정보의 차이와 픽셀 간의 유사성을 이용하여 물체의 윤곽을 보존하는 한편, 실시간으로 평활화 과정을 수행하는 방법을 제안한다. 아티스트의 의도를 반영하기 위해 초기 입력한 깊이 정보를 바탕으로 적응적인 스무딩 파라미터를 할당함으로써 기존의 수작업을 반자동화하였다. 제안된 방법에서는 기존 방법의 평활화 단계에서 Domain Transformation 기법을 적용하고, 노이즈 제거 단계에서 양방향 필터를 적용하였다. 즉 산업 현장에서 문제점들을 해결하도록 알고리즘을 변형하여 기존 알고리즘의 성능을 개선하였다. 실험 결과는 제안된 방법이 기존의 제작 방법과 비교하여 적은 양자화 단계로 동일한 성능을 내는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.