• Title/Summary/Keyword: 육역화

Search Result 21, Processing Time 0.03 seconds

Structure and Distribution of Vegetation and Their Implications for the Conservation in the Gonggeomji Wetland Protection Area, South Korea (공검지 습지보호지역의 식생 구조와 분포 및 보전을 위한 제안)

  • Lee, Cheolho;Kim, Hwirae;Park, So Hyun;Chu, Yeounsu.;Yoon, Jungdo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.267-276
    • /
    • 2019
  • The Gonggeomji Reservoir is a historical irrigation facility built in the 8th century and designated as a wetland protected area by Ministry of Environment, Korea. In order to collect the baseline data necessary for developing a sustainable conservation strategy, we investigated the classification of actual vegetation, the vegetation distribution and the floristic structure of the vegetation in the Gonggeomji Wetland Protection Area. In the whole protection area, a total of 26 plant communities were classified including the wetland, riparian, grassland, forest, farmland, and orchard vegetation. According to the results of detrended correspondence analysis, the structure of wetland vegetation was mainly affected by water depth and human disturbance. In reservoir wetlands, floating vegetation such as Utricularia vulgaris var. japonica, Trapa japonica, and emergent vegetation such as Nelumbo nucifera, Typha spp. completely covered the water surface. Since 2014, the reservoir wetland has been terrestrialized with the expansion of emergent and hygrophytic plants. For the sustainable conservation and restoration of wetland protected areas, it is necessary to naturalize the topography and wetland vegetation, recovery the hydrologic system, and restore ecosystem connectivity from wetlands to forests.

Mechanism of Wetland Formation according to Interaction of River Bed Fluctuation and Plant Success in the Hangang River Estuary (한강하구에서 하도변화와 식물천이의 상호작용에 따른 습지형성 기작)

  • Lee, Samhee;Youn, Sukzun
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.320-330
    • /
    • 2022
  • The Hangang river estuary, which is a natural estuary without structures such as estuary barrage, is an ecological pathway connecting the sea and rivers. Accordingly, Hangang river estuary has various species, and there is very valuable. Sediment classification in Hangang river estuary is three-dimensionally and diversely is distributed. Sediment classification in Hangang river estuary is also sensitively changed according to various factors such as climate change and river development. It is typically cause to landform and to develop a compound cross section. In Janghang wetland, the plant success is remarkable according to the morphological change at river bed. The purpose of this study is to identify the mechanism of wetland formation based on the observation on-site. As a result of the observation, Janghang wetland where was artificially created, has been grown according to the river bed change based on the flow rate and the plant success. The viscous surface layer material(fine grains of wash rod properties), which is not the main material(sand) of the river bed, but sub-materials of river bed, jas been settled on the pioneer plants(bolboschoenus planiculmis, etc.). It is an important role in the growth of a compound cross section and a wetland. After the wetland developed to the compound cross section, it is observed that the pioneer plants are transferred to other plant species.

Topographical change of sandbar and vegetation settlement in Jang-Hang wetlands for Han River Estuary Wetlands Restoration (한강 하구 습지복원을 위한 장항습지의 사주 지형변화 및 식생정착)

  • Ahn, Hong-Kyu;Kim, Si-Nae;Chung, Sang-Joon;Lee, Dong-Jun;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.277-288
    • /
    • 2012
  • Estuary is unique habitat ground under substantial changes of water quality, river side, bed material, and micro topography. Construction of SinGok underwater weir with excessive dredging for downstream of weir has changed hydraulic conditions of Han River. This study investigates spatial changes of estuary and expansion process of vegetation on sandbar for JangHang estuary in Han River through analysis of physical and ecological characteristics. As a result of investigation, we found that area of sandbar in JangHang estuary is expanded six times compared between 1985 and 2006, and area of Phragmites australis is gradually decreased while area of Salix subfragilis Anderson. is increased. Also the analysis result of soil layer shows that the Jang-Hang wetlands are created by effect from river, and woody plants are settled from middle part of wetlands, then spread to upper and lower part of wetlands.

Estimating magnitude of suspended sediment transport in ungauged east coastal zone (미계측 동해안 유역의 토사유출 규모의 평가에 관한 연구)

  • Lee, Sangeun;Kang, Sanghyeok
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • Coastal sediment archives are used as indicators of changes on shore sediment production and fluvial sediment transport, but rivers crossing coastal plains may not be efficient conveyors of sediment to the coast. In some case there is a net loss of sediment in lower coastal plain reaches, so that sediment input from an upstream exceeds the sediment yield (SY) at the river mouth. The main source of sediment in coastal area is the load from land. In Korea, data on suspended SY are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate SY for ungauged coastal basins, using a soil erosion model and a sediment delivery ratio (SDR) model. For applying the SDR model, a basin specific parameter was validated on the basis of field data. The proposed relationships may be considered useful for predicting suspended SY in ungauged basins that have geologic, climatic and hydrologic conditions similar to the study area.

Analysis of flood stage difference due to the vegetation in Seomjin river in August 2020 (2020년 8월 홍수시 식생으로 인한 섬진강 홍수위 변화 분석)

  • Kim, Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.2-2
    • /
    • 2021
  • 최근들어 하천내 식생이 차지하는 비율이 크게 증가하고 있으며, 이러한 현상은 하천의 규모나 위치, 댐 유무에 관계없이 전국적으로 발생하고 있다. 식생 면적 비율의 증가는 하천의 육역화로 이어질 뿐만아니라 홍수위를 상승시켜 홍수 안전에 영향을 미칠 수 있다. 본 연구에서는 2020년 8월 섬진강에서 발생한 홍수를 대상으로 식생이 홍수위에 미치는 영향을 분석하였다. 섬진강에는 초본류 뿐만아니라 버드나무류의 목본류가 상당히 분포하고 있으며 이와 같은 식생이 홍수흐름에 큰 영향을 미친 것으로 보인다. 분석을 위해 홍수 이후 섬진강 현지 답사를 통해 식생분포 현황 및 홍수로 인한 영향을 조사하였다. 섬진강의 식생분포 조사를 위해서는 2020년 4월 조사된 유럽 우주국 Sentinel-2 위성영상을 사용하였으며, 정규식생지수(NDVI)와 정규수분지수(NDWI)를 이용하여 하천내 식생밀도를 단계별로 구분하였다. 군집된 식생지수에 따라 USGS의 매닝계수 산정표를 기본으로 식생분포 군집별 조도계수를 산정하여 대상 구간내에 2차원으로 분포시켰다. 수치모형은 NAYS2D 모형을 사용하였으며 대상구간은 섬진강 고달교에서 구례교까지 21.5km이다. 계산조건은 2020년 8월 홍수중 구례교 수위관측소를 기준으로 최대수위가 발생한 시점의 자료를 활용하였다. 고달교에서는 홍수통제소에서 제공하는 홍수량을 상류경계 조건으로 입력하였고 구례교에서는 해당 시각의 수위를 하류경계조건으로 입력하였다. 모형의 검증을 위해 대상구간의 중간에 있는 압록수위관측소 수위를 활용하였다. 식생 유무에 따른 홍수위변화는 조도계수 값에 의해 반영되도록 하였는데 식생이 있는 경우는 현재 상태, 식생이 없는 경우는 모든 지점에 모래와 자갈이 분포하는 것으로 가정하여 계산된 홍수위를 비교하였다. 분석 결과 대상구간에는 전체 면적중 약 56%를 식생이 차지하고 있으며 이로 인해 0.5~1.0m의 홍수위 상승이 발생하는 것으로 분석되었다. 수목으로 인해 2020년 8월과 같은 큰 홍수시에도 홍수위가 크게 상승하는 것으로 분석되었는데 이와 같은 점을 고려하면 하천내 식생이 홍수위에 미치는 영향을 감안하여 적극적인 식생관리 방안이 시행될 필요가 있을 것으로 판단된다.

  • PDF

Functional Assessment for Preservation and Restoration of Wetland-type Old River Channel:Mangyoung River (습지형 구하도 보전 및 복원을 위한 기능 평가: 만경강 대상)

  • Hong, Il;Kang, Joon Gu;Kang, Su Jin;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.213-220
    • /
    • 2012
  • Old river channels have been formed by engineering a straight channel in Korea. This can be classified as wetland-type or land-type. The wetland-type old river channel uses parts of agricultural water supply. However, the channels have been neglected since there are problems associated with poor water quality, reduced water level, ecosystem disturbance, etc. Thus, river maintenance through preservation and restoration of old river channel can be very effective in watershed management. To achieve this, functional assessment of wetland-type old river channel is a priority need. This study applied the wetland-type channel in Mangyoung river for functional assessment. It was formed these channels with regard to the following four major criteria (Natureless, Habitat, Water-friendliness and Water quality) and 21 indices. The indices managed by measuring depending in weights. Consequently, wetland-type channel in Mangyoung river was in good condition both natureless and habitat, while it was a fragile environment in water-friendliness and water quality. In particular, the areas where it has insufficiency water and water suffering from eutrophication needs urgent improvement. This results will be used to utilize wetland-type old river channel as watershed management.

A Research for Shorebirds on the Southernmost of Nakdong Estuary (낙동강 하구 최남단 사주의 도요.물떼새류에 관한 연구)

  • Hong, Soon-Bok
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.199-206
    • /
    • 2005
  • Estuary islets should be managed systematically because they are important places for birds to rest and breed. This paper investigates the environmental properties of islets where the sand banks are located from east to west on the southernmost of Nakdong estuary during a year (September 2003 $\sim$ August 2004). The research showed that 59 species and 19,148 individuals were found in the area A (Jangja Shinja-Do) and 61 species and 28,394 individuals in the area B (Saja-Do; Beakhapdeung Doyodeung). Totally, 74 species and 47,539 individuals were observed in both of this estuary. Shorebirds are the most observed species in both areas. In area, most of individuals were especially observed in the spring when Shorebirds migrate northward for breeding. In B area, various species were also observed in the fall when they migrate southward for wintering. Therefore, many groups of birds are observed around Shinja-Do in the spring. They passed the winter in Doyodueng, associated with feeding in the main stream of Nakdong river mainly. Although the southernmost sand bar is the breeding place to access to outside without interception, invasion by human beings and predators (mice, weasels and etc.) gives a fatal blow for birds to breed or rest. The reed which is a tall herbaceous plant is flourished according to the process of ecological succession. Therefore, the sand bar becomes a land. It results in reduction of habitats and breeding grounds for birds. In conclusion, these areas where birds can use the islets as habits and breeding places must be preserved by restraining luxuriance of reeds and systematic management of human beings and predators is necessary.

Study on Characteristics for Local Deposit of Sediment by Surveying River Bed's Layer History in High Berm of River Channel (하도 층구조 이력조사를 통한 하도내 국지퇴적 특성 분석)

  • Ryu, Young-Hoon;Lee, Sam-Hee;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.883-891
    • /
    • 2010
  • More recently, there have been significant changes in the forms of channels due to runoff characteristics driven by climate changes and other alterations in basin/channel environments. Particularly, increasing local deposition in major channels is being observed nationwide. Of such phenomena, it is noteworthy that flood-plains show unidirectional growth and lowering of channels within compound channels in the form of a high-flow plain. These changes are supposed to affect management of the river ecology as well as flood control. In this study, the research on channels in Korea confirmed that the phenomenon of local deposition in those channels is actually taking place, rendering a problem to be urgently addressed. Previous studies on bed changes have been focused on low channels based on bed materials distributed over the channels. However, this research has proved that surface-layer deposition of a high-flow plain is closely related with changes in the conditions of ground surfaces and, ultimately, affects the bed of the entire channel as well. According to the intensive research on the condition of the high-flow plain of the mouth of the Han River, the silt deposited in the high-flow plain was the main cause of settlement/growth of vegetation. And this leads to landforming along with woods-forming, disturbing flood control as well as the normal river ecology.

Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River (강우 발생 패턴변화와 하천 수위 변화가 하천식생 발생에 미치는 영향)

  • Kim, Won;Kim, Sinae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.238-247
    • /
    • 2020
  • This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF