• Title/Summary/Keyword: 육상

Search Result 2,023, Processing Time 0.022 seconds

Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선박교통관제 업무 변화에 관한 연구)

  • Dae-won Kim;Myeong-ki Lee;Sang-won Park;Young-soo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.430-436
    • /
    • 2023
  • Study on Changes in Vessel Traffic Services Due to Introduction of Maritime Autonomous Surface ShipsThe development of technologies related to Maritime Autonomous Surface Ships (MASS) has been actively progressing since the mid-2010s, focusing on themes such as collision avoidance, route planning, digital twin, and communication technologies. On the other hand, research on land-based infrastructure connected with MASS, such as logistics systems, port facilities, and vessel traffic services, has relatively received less attention. This study analyzed impact of emergence of MASS on existing vessel traffic service operations and proposed changes in control operations to prepare for its impact. To do this, current vessel traffic service operations were analyzed and elements of MASS technology that could affect vessel traffic control were identified. A survey was conducted among vessel traffic controllers to identify items related to the control of MASS. Results analyzed using the AHP method showed that preparation for emergency response and communication methods with MASS were the most important. Based on this, we were able to derive detailed plans for basic MASS control procedures and emergency response procedures based on data communication within maritime traffic control areas. MASS control procedures proposed in this study are expected to be used as a solution to resolve issues related to traffic safety of MASS in coastal areas.

A Study on How to Build a User-centered·Field-oriented Ship-communication Test Environment(Living Lab) (사용자 중심의 선박통신 현장 시험 환경(Living Lab) 구축 방안 연구)

  • Sangjin JANG;Bu-Young KIM;Hyo-Jeong KIM;Si-Hwan LEE;Taehan SONG;Woo-Seong Shim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.394-400
    • /
    • 2023
  • Unlike advancements on land, the maritime industry has been slow to embrace new technologies, primarily due to user apprehension toward unproven innovations in the development process. The existing paradigm of technology development, marked by expert-oriented and laboratory-centric test environments, often leads to a stagnation of progress at the research stage, as the applicability of the technology remains uncertain. This study departed from the conventional research system and introduced a novel methodology known as a "living lab." This approach aimed to ensure applicability by actively involving field-oriented users throughout the entire lifecycle of technology development, encompassing planning, development, verification, and evaluation. The presentation of a plan for the construction and operation of such a living lab in this study is expected to contribute to establishing an efficient experimentation system for ships that can reflect user opinions in the future and to secure technology applicability in the maritime field.

Ecological Factors Influencing the Bird Diversity on Baekdudaegan Protected Area Cheonwangbong to Aghwibong Region (백두대간보호지역의 천왕봉에서 악휘봉 구간에 서식하는 조류의 다양성에 영향을 주는 생태적 요인)

  • Hyun-Su Hwang;Doory No;Yunkyoung Lee
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.1
    • /
    • pp.48-54
    • /
    • 2024
  • This study conducted a survey from April 2021 to December 2022 to investigate habitat factors affecting bird diversity in the region between Cheonwangbong Peak and Aghwibong in Baekdudaegan protected area, South Korea. Since the region has a spatial scale of 736.4 km2 and is an area where a wide variety of habitats are mixed, we selected 20 survey areas of 3 km x 3 km by analysis of habitat homogeneity. As a result of analyzing the relationship between habitat environment and bird diversity in the survey area, it was found that the diversity of bird communities was directly or indirectly related to the diversity of terrestrial insects, slope, average habitat area, mean size of patches, elevation, and forest type, and distance from agricultural land. The slope of habitat, forest type, and distance from agricultural land affect the occurrence of food sources directly and indirectly, and the average area of habitats and forest type is closely related to the structural diversity of habitats. Therefore, it is determined that the diversity of bird communities is affected by the amount of food generated within the habitat and the diversity of habitats. It is determined that the relationship between bird communities and habitat environments in this surveyed region can be basic ecological data for establishing forest management measures to promote the diversity of bird communities.

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Analysis of biodiversity change trend on urban development project - Focusing on terrestrial species in Environmental Impact Assessment - (도시의 개발 사업에 따른 생물다양성 변화 추세 분석 - 환경영향평가의 육상 동물종을 중심으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Jeon, Yoon-Ho;Choi, Ji-Young;Kim, Shin-Woo;Hwang, Hye-Mi;Kim, Da-Seul;Moon, Hyun-Bin;Bae, Ji-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.21-32
    • /
    • 2023
  • The Environmental Impact Assessment (EIA) plays a pivotal role in predicting the potential environmental impacts of proposed developments and planning appropriate mitigation measures to minimize effects on species. However, as concerns over biodiversity loss rise, there's ongoing debate about the efficacy of these mitigation plans. In this study, we utilized data from EIAs and post-environmental impact surveys to understand the trends in biodiversity during construction and operation phases. By examining 30 urban development projects, we categorized species richness indices of mammals, birds, amphibians, and reptiles into pre-construction, during construction, and post-construction operational stages. The biodiversity trends were analyzed based on the rate of change in these indices. The results revealed three distinct biodiversity change patterns: (A) An initial increase in biodiversity indices post-development, followed by a gradual decline over time; (B) a sustained increase in biodiversity as a result of mitigation measures; and (C) a continuous decline in biodiversity post-development. Furthermore, all species exhibited a higher rate of biodiversity decline during the construction phase compared to the operational phase, with mammals showing the most significant rate of change. Notably, the biodiversity change rate during operation was generally lower than during construction. In particular, mammals seemed to be most influenced by mitigation measures, displaying the smallest rate of change. This study provides empirical evidence on the efficacy of mitigation measures and deliberates on ways to enhance their effectiveness in minimizing the adverse impacts of urban development on biodiversity. These findings can serve as foundational data for addressing terrestrial biodiversity reduction.

Development of a Program for Calculating Typhoon Wind Speed and Data Visualization Based on Satellite RGB Images for Secondary-School Textbooks (인공위성 RGB 영상 기반 중등학교 교과서 태풍 풍속 산출 및 데이터 시각화 프로그램 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.173-191
    • /
    • 2024
  • Typhoons are significant meteorological phenomena that cause interactions among the ocean, atmosphere, and land within Earth's system. In particular, wind speed, a key characteristic of typhoons, is influenced by various factors such as central pressure, trajectory, and sea surface temperature. Therefore, a comprehensive understanding based on actual observational data is essential. In the 2015 revised secondary school textbooks, typhoon wind speed is presented through text and illustrations; hence, exploratory activities that promote a deeper understanding of wind speed are necessary. In this study, we developed a data visualization program with a graphical user interface (GUI) to facilitate the understanding of typhoon wind speeds with simple operations during the teaching-learning process. The program utilizes red-green-blue (RGB) image data of Typhoons Mawar, Guchol, and Bolaven -which occurred in 2023- from the Korean geostationary satellite GEO-KOMPSAT-2A (GK-2A) as the input data. The program is designed to calculate typhoon wind speeds by inputting cloud movement coordinates around the typhoon and visualizes the wind speed distribution by inputting parameters such as central pressure, storm radius, and maximum wind speed. The GUI-based program developed in this study can be applied to typhoons observed by GK-2A without errors and enables scientific exploration based on actual observations beyond the limitations of textbooks. This allows students and teachers to collect, process, analyze, and visualize real observational data without needing a paid program or professional coding knowledge. This approach is expected to foster digital literacy, an essential competency for the future.

Scientific Objectives and Mission Design of Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe (IAMMAP) for a Sounding Rocket in Low-Altitude Ionosphere (저고도 전리권 관측을 위한 사운딩 로켓 실험용 IAMMAP(Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe)의 과학적 목표와 임무 설계)

  • Jimin Hong;Yoon Shin;Sebum Chun;Sangwoo Youk;Jinkyu Kim;Wonho Cha;Seongog Park;Seunguk Lee;Suhwan Park;Jeong-Heon Kim;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 2024
  • Sounding rockets are cost-effective and rapidly deployable tools for directly exploring the ionosphere and microgravity environments. These rockets achieve their target altitudes quickly and are equipped with various scientific instruments to collect real-time data. Perigee Aerospace plans its inaugural test launch in the first half of 2024, followed by a second performance test launch in January 2025. The second launch, scheduled off the coast of Jeju Island, aims to reach an altitude of approximately 150 km with a payload of 30 kg, conducting various experiments in the suborbital region. Particularly in mid-latitude regions, the ionosphere sporadically exhibits increased electron densities in the sporadic E layers and magnetic fluctuations caused by the equatorial electrojet. To measure these phenomena, the sounding rocket version of ionospheric anomaly monitoring by magnetometer and plasma-probe (IAMMAP), currently under development at the KAIST Satellite Research Center, will be onboard. This study focuses on enhancing our understanding of the mid-latitude ionosphere and designing observable missions for the forthcoming performance tests.

Necessity of Quality Control for Aviation Fuel(Jet A-1) to Secure Aviation Safety (항공안전 확보를 위한 항공유(Jet A-1) 품질관리 필요성)

  • Junbeom Heo;Yumi Kang;Heejin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.194-199
    • /
    • 2024
  • Accidents due to aircraft fuel defects rank in the top 13 of the 34 accident types described by CAST-ICAO Common Taxonomy Team(CICTT). Aircraft accidents occur because of the inflow of moisture or pollutants depending on the distribution process and storage environment. To confirm the change in physical properties of the aircraft oil stored for a long time, we stored JET A-1 aircraft oil in a metal can to observe the change after six months. We confirmed that the aircraft oil stored for a long time satisfied the quality standards, and the stability of the fuel oil was high. However, in scenarios in which aircraft oil is stored separately on ships, onshore storage facilities, oil fields, etc., owing to the nature of missions, such as in marine police aircraft, the inflow of moisture or pollutants may likely occur due to changes in the internal and external environment. In addition, pollutants can be analyzed using existing tests and distillation properties, but for moisture, domestic and international standards and domestic laws determine the moisture separation ability of aircraft oil through the water separation index, but the moisture content is not analyzed. Therefore, aviation safety must be secured by adding quality control standards for moisture content and performing revisions to uniformize domestic and international standards and laws.

Bloom of a green alga Bryopsis plumosa(Hudson) C. Agardh at Songji Beach, Haenam, Korea (한국 해남군 송지해변 녹조류 참깃털말 Bryopsis plumosa(Hudson) C. Agardh의 대량발생)

  • Hyun Il Yoo;Ji Woong Lee;So Mi Koh;In Ho Kim;Eun Kyoung Hwang
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • The feathery branched green alga Bryopsis plumosa (Hudson) C. Agardh bloomed at Songji Beach, Haenam, Korea, in November 2022. A terrible stench was present on the beach, and the bottom was covered in a thick green mat of green algae. The alga was identified as B. plumosa, which is an opportunistic species currently distributed worldwide. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were analyzed in the bloomed area and compared with those of other vicinities. The DIN and DIP concentrations were 1.067 and 0.461 mg L-1, respectively, which were 6 to 19 times higher than the average concentrations on southwest coasts, including Haenam. The B. plumosa bloom at Songji Beach in November 2022 appears to have depended on DIN and DIP concentrations in seawater. In this study, we report on the mass occurrence of B. plumosa, which appeared for the first time in Korea. This occurrence was found to be closely related to the concentration of nutrients in seawater. Therefore, it is necessary to manage the concentration of nutrients on land flowing into coastal waters to control green algal blooms such as Bryopsis.