• Title/Summary/Keyword: 유효 전단응력

Search Result 176, Processing Time 0.03 seconds

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Three Dimensional Strength Characterisics of Compressible Sand (압축성 모래의 3차원 전단강도 특성)

  • Park, Byeong-Gi;Jeong, Jin-Seop;Im, Seong-Cheol
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.65-76
    • /
    • 1990
  • A series of consolidated drained and untrained cubical triaxial tests were performed to investigate three dimensional strength characteristics of compressible sand. All specimens, which are formed by deposisting a fine sand loosely, were used. Failure strength in terms of effective stress analysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion The adjusted effective frictional angles obtained by the stress state projected on the same octahedral plane showed almost same value, while the measured effective frictional angles showed considerable difference depending on the drainage conditions. Results of total stress analysis in undrained test turned out to fit Tresca's failure criterion well, but results of effective stress analysis turned out to fit Lade's failure criterion well.

  • PDF

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Centrifuge Test and Its Numerical Modeling for Reliquefaction (재액상화에 관한 원심모형실험과 수치해석)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.89-98
    • /
    • 2006
  • In this paper the behavior of saturated sand deposits where liquefaction occurred before is studied for successive earthquakes. The relationship between past pore pressure generation and reliquefaction resistance is examined by using cyclic direct simple shear tests. If the soil sample in direct simple shear produced nearly 90% of excess pore pressure during first time loading, its liquefaction resistance increased during following cyclic loading after consolidation. However, a fully liquefied soil during first time loading has a densely packed condition but shows less liquefaction resistance for the following cyclic loading. UBCSAND model that can account for pore pressure change and stiffness loss of soil during shaking is used to analyze the centrifuge test simulating reliquefaction. The pore pressure rise during first time cyclic loading controls liquefaction resistance. The measurements from reliquefaction centrifuge test are compared with numerical predictions. By considering frequent earthquakes having occurred at the Southern Korea near Japan, such effective stress approach is necessary for reliquefaction study.

Shear Strength Model for FRP Shear-Reinforced Concrete Beams (FRP 전단 보강 콘크리트 보의 전단강도 모델)

  • Choi, Kyoung-Kyu;Kang, Su-Min;Shim, Woo-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.185-193
    • /
    • 2011
  • In the present study, a unified shear design method was developed to evaluate the shear strength of concrete beams with and without FRP shear reinforcement. The contributions of FRP and concrete on shear strength were defined separately. By comparing the current design method calculated results with the existing test results, it was found that Triantafillou model shows a reliable prediction of FRP effective strain and FRP shear strength contributions. The concrete shear strength contribution was defined by the strain-based shear strength model developed in the previous study. The shear strength of concrete compression zone was evaluated based on the material failure criteria of the concrete subjected to the compressive normal and shear stresses. The proposed strength model was verified by comparing its prediction results to prior test results. The comparisons showed that the proposed method accurately predicts the strengths of the test specimens for both FRP shear reinforced and unreinforced concrete beams.

Shearing Behaviors of the Soft Marine Clay in Undrained and Drained Conditions (연약해성점토의 비배수 및 배수 전단 거동)

  • 이영휘;김용준;정강복
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.29-36
    • /
    • 2001
  • 한반도 남해안의 광양만에서 채취한 연약 해성점토의 물리적 및 역학적 특성을 조사하기 위한 일련의 실내시험을 수행하였다. 물리적 성질 및 압밀시험 결과의 분석에 따르면, 시험에 사용된 시료는 정규압밀점토로 나타났다. 압밀비배수 삼축시험 결과로부터 새로운 간극수압계수(C)를 제안하였고, 이 계수는 유효응력경로를 예측하기 위한 방정식에 적용되었다. 또한, 비배수조건에서 전단변형률은 오로지 응력비만의 함수라는 사실이 실험결과로부터 밝혀졌다. 따라서 비배수 조건에서의 전단변형률 계산식이 제안되었으며, 이들 관계식을 이용하여 비배수(CIU) 및 배수조건(CID)에서의 점토의 거동을 예측하기 위한 새로운 구성방정식이 제안되었다. 이 구성방정식은 Roscoe와 Poorooshasb이 제안한 증분응력-변형률 이론을 기초로 하였으며, 제안된 구성방정식을 적용하여 예측한 배수전단특성을 실측된 결과에 매우 근접하는 경향을 나타내었다.

  • PDF

Determination of Effective Flange Width in Single Plane Cable-Stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 유효플랜지폭 결정에 관한 연구)

  • Lee, Hwan-Woo;Kim, Kwang-Soo;Kang, Ho-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.343-351
    • /
    • 2010
  • Bending and axial compressive stresses are distributed across the whole upper flange of a box girder bridge which has the span-to-depth ratio (B/L) of below 0.5, according to Korea Bridge Design Specifications (Minister of Land, Transport and Maritime Affairs, 2005). Shear lag phenomenon, however, can take place in the construction phase of cable-stayed bridge, in which stresses combining bending moment due to dead weight and cable vertical compression are induced. This study aims to analyze the effective width of flange over which composite stresses are given, which should be calculated during the construction phase of stiffening girder of single plane cable-stayed box girder bridge. The study results indicate that the full width of stiffening girder can be regarded as the effective flange width when the span-to-depth ratio for the deck is below 0.38. In other words, the area, where shear lag is taken into consideration, is larger than the width of box girder in single plane cable-stayed box girder bridges. Therefore, the current practice of considering the full width as the effective flange width regardless of changes of the span-to-depth ratio during the construction stage can produce an unsafe bridge. If the effective flange width is determined according to the single span structural system in the early stage of construction when the span-to depth ratio for the deck is high and composite stresses of every part expect each end of the bridge are calculated, it can result in a safe structural design. Since the span-to-depth ratio gradually decreases, however, it is appropriate to determine the effective width of flange on the basis of the full width and the cantilever structural system.

Instability of Biceps Tendon

  • 최창혁
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2004.03a
    • /
    • pp.55-58
    • /
    • 2004
  • 이두박건 활차의 역할은 견관절 운동 시 이두박건 장두에 가해지는 전상방 전단응력을 막아주며, 관절내에서 이두박건의 운동을 인도해줌으로써, 이두박건 장두의 관절내 유효거리를 유지해 주게 된다. 견관절의 외전 및 외회전 운동시 이두박건 장두의 내측으로 가해지는 응력은 이두박건 활차 및 견갑하건의 손상과 함께 이두박건 장두의 내측 탈구를 유발할 수 있으며, 회전건개 파열과 동반될 경우 증상을 더욱 악화시킬 수 있으므로 진단 및 치료에 주의를 요한다.

  • PDF

Instability of Long Head of Biceps Tendon

  • 최창혁
    • Clinics in Shoulder and Elbow
    • /
    • v.7 no.2
    • /
    • pp.90-93
    • /
    • 2004
  • 이두 근 활차의 역할은 견관절 운동 시 이두 근 장두에 가해지는 전상방 전단응력을 막아주며, 관절 내에서 이두 근의 운동을 인도해줌으로써, 이두 근 장두의 관절 내 유효거리를 유지해 주게 된다. 견관절의 외전 및 외회전 운동시 이두 근 장두의 내측으로 가해지는 응력은 이두 근 활차 및 견갑하건의 손상과 함께 이두 근 장두의 내측 탈구를 유발할 수 있으며. 회전근 개 파열과 동반될 경우 증상을 더욱 악화시킬 수 있으므로 진단 및 치료에 주의를 요한다.

Liquefaction Evaluation of Reclaimed Sites using an Effective Stress Analysis and an Equivalent Linear Analysis (유효응력해석과 등가선형해석을 이용한 매립지반의 액상화 평가)

  • Park, Sung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.83-94
    • /
    • 2008
  • In this study an effective stress analysis was performed to evaluate liquefaction potential and ground settlement for reclaimed sites. The effective stress model can simulate the stiffness degradation due to excess pore pressure and resulting ground deformation. It is applicable to a wide range of strain. An equivalent linear analysis suitable for low strain levels was also carried out to compare the effective stress analysis. Shear stress ratio calculated from an equivalent linear analysis was used to determine SPT blow count to prevent liquefaction. Depending on the magnitude of potential earthquake and fine contents, the SPT blow count was converted into an equivalent cone tip resistance. It was compared with the measured cone tip resistance. The measured elastic shear wave velocity and cone tip resistance from two reclaimed sites in Incheon were used to perform liquefaction analyses. Two liquefaction evaluation methods showed similar liquefaction potential which was evaluated continuously. The predicted excess pore pressure ratio of upper 20 m was between 40% and 70%. The calculated post-shaking settlement caused by excess pore pressure dissipation was less than 10 cm.