• Title/Summary/Keyword: 유효 압축률

Search Result 96, Processing Time 0.021 seconds

The Analysis for the Effect of Effective Compressibility on Oil Recovery in Polymer Flooded Heterogeneous Reservoir (폴리머 공법 적용 불균질 저류층에서의 유효 압축률이 오일생산에 미치는 영향 분석)

  • Baek, Soohyun;Jung, Woodong;Sung, Wonmo;Seo, Junwoo
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The compressibility of fracture in naturally fractured reservoir is larger than the compressibility of matrix in rock, although the compressibility of a typical rock is very small. The effective compressibility including the fracture compressibility should be considered to predict oil recovery correctly. It is hard to quantify changes of fracture aperture and pore volume in reservoir without the effective compressibility. In this study, oil recovery is analyzed by commercial simulator concerning the fracture compressibility based on fracture properties. We found that the effective compressibility affects oil recovery with change of polymer flooding factors such as polymer molar weight, concentration and injection rate. The estimated cumulative oil production is smaller with the effective compressibility than without it. Also, bottomhole pressure decreases rapidly without considering effective fracture compressibility.

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Image Compression using Validity and Zero Coefficients by DCT(Discrete Cosine Transform) (DCT에서 유효계수와 Zero계수를 이용한 영상 압축)

  • Kim, Jang Won;Han, Sang Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.97-103
    • /
    • 2008
  • In this paper, $256{\times}256$ input image is classified into a validity block and an edge block of $8{\times}8$ block for image compression. DCT(Discrete Cosine Transform) is executed only for the DC coefficient that is validity coefficients for a validity block. Predict the position where a quantization coefficient becomes 0 for an edge block, I propose new algorithm to execute DCT in the reduced region. Not only this algorithm that I proposed reduces computational complexity of FDCT(Forward DCT) and IDCT(Inverse DCT) and decreases encoding time and decoding time. I let compressibility increase by accomplishing other stability verticality zigzag scan by the block size that was classified for each block at the time of huffman encoding each. In addition, the algorithm that I suggested reduces Run-Length by accomplishing the level verticality zigzag scan that is good for a classified block characteristic and, I offer the compressibility that improved thereby.

  • PDF

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring (저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구)

  • Lee, Ukjun;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.

Estimation of Compressive Stiffness of Polyurethane Rubber Springs and Its Application (폴리우레탄 고무 스프링의 압축 강성도 추정 및 적용)

  • Choi, Eunsoo;Park, Seungjin;Woo, Daeseung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • The purpose of this study is to investigate the behavior and characteristics of rubber springs and calculate the compressive stiffness by performing dynamic compression tests of rubber springs. In order to carry out the dynamic compression test of rubber spring, total 9 rubber springs were tailored by calculating the shape factor of L80-D55, L90-D58, and L100-D60, and used for the experiments. Experiments were performed by controlling the compression according to the length of the rubber spring, and the compression was increased in the order of 5%, 10%, 15%, 20% and 25% of the strain. From the experimental results, the force-strain curves were obtained and it was confirmed that strength decrease and strength increase phenomenon occurred as the strain increased. In addition, it was confirmed that the decrease of stiffness and the increase of stiffness were clearly observed according to the size and diameter of the rubber spring, and the effective compression stiffness was estimated using the slope of the force-strain curve. By using the effective compressive stiffness, design values that can be used in actual design were presented.

Enhanced Image Compression based on Wavelet using Variable Threshold and Zerotree Structure Scanning (가변 문턱 값과 대역별 제로트리 스캔에 의한 웨이브릿 정지 영상 압축 기법의 개선)

  • 최정구;김도년;조동섭
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.6
    • /
    • pp.500-509
    • /
    • 2001
  • Image compression based on Wavelet gives much better quality than JPEG based on DCT, but suffers from ringing or blurring effects around edges as the compression is increased. In this paper, we proposed enhanced image compression by pre-processing wavelet coefficients. This pre-processing is performed by making a low threshold and enhanced by zerotree scan method when subband's zerotrees are established. It might increase significants coefficient by means of modifying the threshold and reflect on the orientation of subbands. Some experimental results show our method is more efficient than the conventional methods, JPEG. And then the developed coding scheme improves the quality of images and visually shows more pleasing results for most practical images.

  • PDF

Improvement of AMR Data Compression Using the Context Tree Weighting Method (Context Tree Weighting을 이용한 AMR 음성 데이터 압축 성능 개선)

  • Lee, Eun-su;Oh, Eun-ju;Yoo, Hoon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • This paper proposes an algorithm to improve the compression performance of the adaptive multi-rate (AMR) speech coding using the context tree weighting (CTW) method. AMR is the voice encoding standard adopted by IMT-2000, and supports 8 transmission rates from 4.75 kbit/s to 12.2 kbit/s to cope with changes in the channel condition. CTW as a kind of the arithmetic coding, uses a variable-order Markov model. Considering that CTW operates bit by bit, we propose an algorithm that re-orders AMR data and compresses them with CTW. To verify the validity of the proposed algorithm, an experiment is conducted to compare the proposed algorithm with existing compression methods including ZIP in terms of compression ratio. Experimental results indicate that the average additional compression rate in AMR data is about 3.21% with ZIP and about 9.10% with the proposed algorithm. Thus our algorithm improves the compression performance of AMR data by about 5.89%.

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.