• Title/Summary/Keyword: 유효응력해석

Search Result 326, Processing Time 0.04 seconds

Experimental and Theoretical Consideration of Liquid Limit (액성한계에 대한 실험적 및 이론적 고찰)

  • Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • 많은 경우 액성한계 이상의 함수비 상태를 각즌 지반을 액체상태로 표현한다. 액체상태의 공학적 의미는 유효응력이 존재하지 않은 상태로 볼 수 있으며, 전단강도가 0임을 의미한다. 그러나 실제로는 액성한계 이상의 함수비를 갖는 지반에서도 유효응력이 존재하며, 따라서 전단강도가 존재한다. 연약한 해성점토의 경우는 이러한 경우가 비교적 흔하다. 일반적으로 액체상태란 용어에서 연상되는 지반상태는 물과 같은 상태로서 기술자로 하여금 지반의 상태에 대한 올바른 감을 가지는 것을 어렵게 한다. 본 고는 Bolt 의 electrical double layer 이론을 이용한 이론적 해석 및 실험적 자료들을 이용하여 액성한계란 용어의 올바른 제조명에 초점을 맞추었다.

  • PDF

Layer Interface and Approximated Nonlinear Analysis Method for Consolidation Prediction (압밀현상 예측을 위한 경계면 및 근사 비선형 해석기법)

  • Lee, Kyuhwan;Jeon, Jesung;Kim, Kiyoung;Jung, Daeesuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.37-43
    • /
    • 2007
  • The interface layer having different consolidation properties and nonlinear material function with permeability needs to be considered to predict consolidation behavior. In this study, interface equation between different layers has been derived and then applied to existing finite difference scheme for conducting consolidation analysis. These results have been compared with those by conventional method in which different layers are converted to single layer having conversion value of properties. Also, although the conventional consoilidation analysis is used to consider non-linearity of the permeability with effective stress, an approximated nonlinear method as a function of consoilidation coefficient with effective stress have been developed and applied to the consoilidation analysis for various cases.

  • PDF

Numerical Modeling of Soil Liquefaction at Slope Site (사면에서 발생하는 액상화 수치해석)

  • Park, Sungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.133-143
    • /
    • 2006
  • A fully coupled effective stress dynamic analysis procedure for modeling seismic liquefaction on slope is presented. An elasto-plastic formulation is used for the constitutive model UBCSAND in which the yield loci are radial lines of constant stress ratio and the flow rule is non-associated. This is incorporated into the 2D version of Fast Lagrangian Analysis of Continua (FLAC) by modifying the existing Mohr-Coulomb model. This numerical procedure is used to simulate centrifuge test data from the Rensselaer Polytechnic Institute (RPI). UBCSAND is first calibrated to cyclic direct simple shear tests performed on Nevada sand. Both pre- and post-liquefaction behaviour is captured. The centrifuge test is then modeled and the predicted accelerations, excess porewater pressures, and displacements are compared with the measurements. The results are shown to be in general agreement. The procedure is currently being used in the design of liquefaction remediation measures for a number of dam, bridge, tunnel, and pipeline projects in Western Canada.

  • PDF

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

Numerical analysis of rock behavior with crack model implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1999
  • Rock behaves in a complex way due to the discontinuities. To describe the complicated failure and deformation behavior of rock, many researches were focused on the development of crack models. This study discusses the validity of the sliding and shear crack model to systematically fractured rock, i.e. coal. The model was also implemented into a numerical analysis. For that, a finite element program was modified in several ways. To describe the transverse isotropy in two-dimensional analysis, the stress-strain relationship was modified for the direction of the axis of symmetry. Also, the changes of the effective elastic moduli according to the crack growth were calculated. A simple example of two-dimensional laboratory uniaxial compression test was analyzed. The results coincided with the observations obtained from the laboratory tests.

  • PDF

A Optimal 3D FE Model for Evaluation of Peening Residual Stress Under Angled Multi-impacts (다중경사충돌시 피닝잔류응력 평가를 위한 최적의 3차원 유한요소모델)

  • Hyun, Hong-Chul;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.125-135
    • /
    • 2012
  • The FE model for shot peening often assume that shots impact vertically on the engineering parts to generate compressive residual stresses. However, the shots obliquely impact on the surface in actual peening. In this work, we propose a 3D finite element (FE) model for evaluation of residual stress under angled shot peening. Using the FE model for angled multi-impact, we examine the effects of factors such as impact angle, impact pattern and the number of shots. Plastic deformation of shot is also considered. To validate the model, we then compare the FE solution with experimental result by X-ray diffraction (XRD). The proposed model will be a base of 3D multi-impact FE model with diverse impact angles.

The Behavior of Tension Splices Fastened with Bolted Connections (볼트로 접합된 인장 이음부의 거동)

  • Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.225-232
    • /
    • 2005
  • The paper presented results of the strength distributions and tension failure behaviors of splices subjected to tension forces. The bolting patterns in the tension splices are regular and staggered patterns in the research. The finite element analyses were carried out to examine the experimental results and evaluated the stress distribution patterns. The yield stresses, maximum tension stresses, stress distribution ratios, and effective net areas were analyzed through the tension experiments.

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Appoximate Analysis of Rigid Frames under Vertical and Lateral Loads (강접골조의 수직 및 수평하중에 대한 근사해석)

  • Choi, Chul Wung;Kim, Young Chan;Kang, Kyung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Even in today's computer-oriented world with all its sophisticated analysis tools, engineering judgement is required to assess the adequacy of computer output. Approximate analysis method can be a feasible tool to check solutions from computer softwares roughly. It can be a simple tool for structural engineer to check force distribution in frame. Also, it can serve as a basis in selecting preliminary member sizes. The objective of this study is length factor and inflection points. The validity of this method is examined by comparing the results of this method with those of existing methods, showing improvement in the prediction of structural behavior.

  • PDF