• Title/Summary/Keyword: 유화액적

Search Result 26, Processing Time 0.028 seconds

Combustion characteristics of water-in-oil emulsion droplets (물-경유 유화연료 액적의 연소특성에 관한 연구)

  • 정종수;신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 1989
  • 본 연구에서는 유화연료 액적의 연소시에 나타나는 일반적인 연소특성과 이에 미치는 압력의 영향에 대하여 실험적인 방법으로 연구를 수행하였다. 고압용기내에서 유화연료의 단일 액적을 연소시키면서 그 연소과정을 고속으로 촬영하여 분석하는 한편, 연소과정중의 액적 내부의 온도변화를 측정하였다. 고압 용기내의 압력은 대기압으로부터 10atm까지, 연료에 대한 물의 혼합비는 체적비로 0-20%까지 변화시키면서, 유화연료 액적의 연소특성에 미치는 물의 함량과 압력변화의 영향을 분석하였다.

  • PDF

Characteristics of ignition and micro-explosion for droplets of water-in-fuel emulsion (유화액적 연료의 점화와 미소폭발의 특성)

  • Jeung, Incheol;Lee, Kyung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The water-in-fuel droplets were applied to investigate the effect of mixing ratio between water and decane, ambient temperature, droplet size and spacing between droplets on ignition and micro-explosion in a heated chamber with high temperature. The ignition temperature of droplet was found lower as the droplet size was increased and the contents of water was decreased. The life time of droplet, however, decreases as the contents of water increases due to the micro-explosion. The occurrence of micro-explosion also increases as the size of droplets and the ambient temperature increase. The flame spread speed gets faster as the contents of water and the number of suspender decreases.

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Simulation of Chemigation Efficacy (관개방제의 효력예측을 위한 시뮬레이션)

  • 구영모;해롤드썸너;래리챈들러
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.10-20
    • /
    • 1996
  • 관개방제 기술의 변수 및 효력예측을 위한 컴퓨터 시뮬레이션 프로그램이 유화/산화액적의 부착율, 유충의 추계적 난보운동 및 무작위 농약흡수 이론을 이용하여 개발되었다. 시뮬레이션 결과는 밤나방 유충, Spodaptera frugiperda (J.E. Smith) (Lepidoptera : Noctuidae)을 이용한 방제효력 실험결과와 비교하였다. 이론치와 실험치는 서로 일치되었다. 방제율은 농약유효성분량이 증가함에 따라 증가하였으며 크로포(chlorpyrifos) 약제의 표준 권고량인 670g[AI]/ha에서 완전방제가 예상되었다. 유화액적(emulsion)은 상대적으로 직경이 큰 산화액적(dispersion) 보다 작물잎 표면에 부착이 어려워 낮은 방제율을 나타내었다. 액적직경이 방제효력에 미치는 영향은 목화작물에 대하여 낮은 약제량에서 뚜렷하게 나타났고, 그 영향은 약제량이 증가할수록 목화 및 옥수수 모두에서 저하되었다. 엽형계수는 작물의 엽상구조에 따른 액적의 부착 및 계류에 미치는 영향을 의미한다. 고찰된 관계방제기술의 영향요소에 대한 이해는 농약사용의 감소 및 효력의 증가에 중요한 역할을 한다.

  • PDF

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Emulsion Stability of Cosmetic Facial Cream O/W Emulsions Prepared by Brij Type Non-ionic Emulsifie (Brij계 비이온성 혼합유화제를 이용하여 제조된 화장용크림 O/W 유화액의 유화안정성)

  • Park, Bo Ra;Lee, Seung Min;Choi, Junho;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.440-445
    • /
    • 2018
  • In this study, the stability of O/W cosmetic facial cream emulsions according to HLB values was evaluated by mixing nonionic surfactants, such as Brij 78&72 and Brij 98&92. Brij 78&72 (steareth-20&steareth-2, EMS-01), saturated fatty acid, and Brij 98&92 (oleth-20&oleth-2, EMS-02), unsaturated fatty acid, were used as mixed surfactants. The stability of the O/W emulsion was evaluated by using the emulsion viscosity, particle size, particle size distribution, and zeta-potential. The viscosity of the emulsion increased with the increase of time for EMS-01 while that of EMS-02 decreased with the increase of HLB value. The particle size of both EMS-01 and EMS-02 increased with time. The emulsifier with a HLB value of 10.8, which is the most similar to the required HLB value of mineral oil, 10.5, had the smallest particle size and highest density and also showed the highest emulsion stability. The zeta-potential of both emulsions tended to increase with the HLB value. No significant changes were observed in emulsions of the HLB value of 10.8 or more. The saturated fatty acid system, EMS-01, exhibited a higher zeta-potential value than that of the unsaturated fatty acid EMS-02 and also was superior in the stability.

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion (마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조)

  • Nam, Jin-Oh;Choi, Chang-Hyung;Kim, Jongmin;Kang, Sung-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion's shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.