• Title/Summary/Keyword: 유해 gas

Search Result 417, Processing Time 0.039 seconds

Consequence Modeling Methodology for Prediction of Hazard Distance for Two-phase Flow Release from the Pressurized Chlorine Saturated Liquid Storage Tank (가압 염소포화액체 저장탱크의 2상 흐름 누출에 대한 유해위험거리의 예측을 위한 결과영향 모델링 방법론)

  • Song D. M.;Park Y. S.;Park J. K.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.7-17
    • /
    • 1998
  • This study is to develop the consequence modeling methodology for quantitative prediction of the hazard distance(or toxic buffer distance) for two-phase flow continuous releases from the pressurized chlorine saturated liquid storage tank of the chemical plant facilities. The source term modeling was peformed by the refined analysis method based on USEPA's guideline and SuperChems model self-calculation, respectively. The hazard distance was predicted for STEL, IDLH and ERPGs(ERPG-2 and ERPG-3) concentrations being used as the toxic regultaion concentration in hazard estimation. To use as hazard estimation guideline for the establishment of the emergency response planning, the effects of source characteristics and meteorological vaiations on the hazard distance was especially considered for ERPG-2 concentration.

  • PDF

A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device (수전해 수소충전소 부품별 유해위험요인 분석)

  • Seo, Doo-Hyoun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • In order to invigoration the hydrogen economy, production of hydrogen needed for hydrogen charging stations and hydrogen fuel cells is needed. Generally, it is reforming used to coal fuel or natural gas. Other technologies include water electrolysis using pure water. Among these water electrolysis technologies, development is mainly carried out using PEM(Polymer Electrolyte Membrane electrolysis). In this study, the company aims to identify potential harmful hazards to PEM electrolysis hydrogen stations in the development stage among hydrogen charging stations. In order to find the hazardous factors in the facilities of the electrolysis and hydrogen charging stations, we were analyzed by Failure Mode & Effect Analysis(FMEA).

A Study on Inhalation Force Improvements of Ventilation Hood For Removed a Pollution Source (유해물질 제거를 위한 국소배기장치 후드의 흡입력 증가에 관한 연구)

  • Yang, Ho-Dong;Kim, Young-Sun;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2327-2332
    • /
    • 2007
  • This study investigates on the inhalation force improvements of hood consisted one of the local ventilation systems attached the new device named as gas-guidance-device for removed a pollution source. The numerical method applying finite element method is calculated the velocity and pressure distributions of a moving fluid at the beginning and the inside of a hood with and without the gas-guidance-device in hood. And, the experimental study is measured the wind velocity using the anemometer at the same condition of numerical study. Also, the optimum shape of gas-guidance-device which is suitable for hood shape derived from the numerical and experimental results. The results of this study is supplied the important data to an industrial field for control of a pollution source in the engineering aspect. Moreover, the introduced technique of hood attached the gas-guidance-device is very useful to remove the harmful materials such as dust and waste happened in the manufacturing factory.

  • PDF

Optimal Design Standard and Application of Low Cost, High Performance Scrubber for Absorbing Hazardous Gas (유해가스 흡수처리를 위한 저비용 고효율 스크러버의 최적 설계기준 및 현장적용 방안)

  • Jung, Ga-Young;Lim, Kyung-Min;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • Scrubbers that treat hazardous materials at workplaces have high treatment efficiency; however, the design is complex, and pumps need to be operated 24 hours a day, which can be costly. Therefore, to minimize the operating costs, small businesses do not install scrubbers, or operate them while circulation pumps are suspended. Hence, this study investigated the application of low-cost, high-performance scrubbers that can be used economically in small businesses. Low-cost, high-efficiency scrubbers are applied to bubble columns to utilize devices for hazardous chemical absorption treatment purposes, and for the development of these scrubbers, absorption performance was reviewed and the optimal application method was studied under certain conditions. The changes in the absorption performance of hazardous gas were studied in certain environments by varying the physical conditions, and the optimal application methods were analyzed. The results showed that, while it was possible to treat some of the gas flowing into the low cost, high performance scrubber, the treatment capacity was reduced. Performance degradation was prevented by supplying an absorption liquid, and a certain level of absorption was maintained depending on the amount of circulation. Based on this, three types of site application methods of low cost, high performance scrubbers were presented. In addition, the appropriate timing of circulation and anti freezing measures were also discussed.

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Study on Shortening Light-Off Time of Three Way Catalyst and Reduction of Harmful Emissions with Exhaust Synthetic Gas Injection(ESGI) Technology during Cold Start of SI Engines (가솔린 기관의 냉간시동 조건에서 합성가스 배기분사 기술에 의한 촉매의 활성화 온도 도달시간 단축 및 유해배출물 저감에 관한 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Since regulations of exhaust emissions are continuously reinforced, studies to reduce harmful emissions during the cold start period of SI engines have been carried out very extensively worldwide. During the cold start period, raising the temperature of cold exhaust gas is a key strategy to minimize the light-off time of three way catalysts. In this study, a synthetic gas containing a large amount of hydrogen was injected into the exhaust manifold to raise the exhaust gas temperature and to reduce harmful emissions. The authors tried to evaluate changes in exhaust gas temperature and harmful emissions through controlling the engine operating parameters such as ignition timings and lambda values. Also the authors investigated both combustion stability and reduction of harmful emissions. Experimental results showed that combustion of the synthetic gas in the exhaust manifold is a very effective way for solving the problems of harmful emissions and light-off time. The results also showed that the strategy of retarded ignition timings and increased air/fuel ratios with ESGI is effective in raising exhaust gas temperature and reducing harmful emissions. Futhermore, the results showed that engine operating parameters ought to be controlled to lambda = 1.2 and ignition timing = $0{\sim}3^{\circ}$ conditions to reduce harmful emissions effectively under stable combustion conditions.

A Study on the Improvement Plan to Prevent Violent Incidents by Domestic Hazardous Chemical Substance (국내 유해화학물질 폭력사건 예방을 위한 개선방안 연구)

  • Lee, Deok Jae;Song, Chang Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.62-69
    • /
    • 2017
  • Chemical accidents are systematically managed by the Chemicals Control Act. However, the definition and case studies of violent incidents by hazardous chemical substances need to be adequately organized. In this study, we focused on suggesting improvement directions of the legal and institutional system to prevent the violent incidents of hazardous chemical substances by studying the problems of current legislation and drawing up implications through domestic and foreign cases. The suggestions for improvement are as follows: 1) Strengthening prevention through amendment of laws (1) Selection of the competent department; 2) Enforcing regulations on online and offline commerce (1) Setting personal purchase amount; and 3) Increasing public awareness and public education (1) Improvement of the continuous system through the Chemical Evaluation Committee.

Development of Nontoxic Flame Retardant Paint (친환경 무독성 난연도료에 대한 연구)

  • Do, Young-Woong;Kwon, Myeon-Joo;Joo, Hyun-Ku;Yoon, Jae-Kyung;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.336-338
    • /
    • 2008
  • 본 연구에서는 EU에서 발효되는 6대 규제유해물질(Pb, Hg, Cd, $C^{6+}$, PBB/PBDE)과 환경부 규제유해물질에 의해 도료의 유해조성물질을 제한하게 됨에 따라 VOC(휘발성유기화합물) 배출이 적고, 브롬계/할로겐계를 탈피하여 인체안전성 확보 및 환경오염을 최소화하며, 방염제 형식승인 및 검정기술기준 (KOFEIS 0201)에 부합하는 수용성 유 무기계 난연도료를 개발하였다. 친환경적인 난연도료 제조에 대한 최적조건으로 Mg(OH)$_2$, $Sb_2O_3$, 붕산아연을 1:2:2로 혼합한 난연제 그리고 바인더(마이셸 2%)와 물의 비율을 1:1로 제조한 후, 난연제:(바인더+물)을 1:1로 제조한 난연도료 3의 성능이 가장 우수하였다.

  • PDF

Investigation of Plant Injury under Ambient Air Pollutants (대기오염물질에 의한 농작물 피해원인 조사)

  • Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Won-Il;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to find out the cause of plant injury, the symptom of plant injury, and contents of element concerned in the plant were analysed. Also, a case study was conducted to find out the factor of plant injury at a agriculture and industry complex in Gyeongsang province in 2004. The distribution of isomeric curve was made with meteorological data, toxic gas concentration exhausted from pollution source. The general symptom of plant injury by ammonia gas was dry and dead of leaves with white color. At low concentration of ammonia gas, plant leaf showed spots of reddish brown. The characteristic of plant injury symptom by hydrogen fluoride gas was that the symptom was appeared at the edge of leaf. The isomeric curve of sulfur dioxide at the region, where the plant was damaged, showed that the area was affected by exhausted gas from the pollution source. Especially, this area was affected more deeply at summer than any other season.