DOI QR코드

DOI QR Code

Optimal Design Standard and Application of Low Cost, High Performance Scrubber for Absorbing Hazardous Gas

유해가스 흡수처리를 위한 저비용 고효율 스크러버의 최적 설계기준 및 현장적용 방안

  • Jung, Ga-Young (Dept. of Chemical engineering, Chonnam National University) ;
  • Lim, Kyung-Min (Dept. of Chemical engineering, Chonnam National University) ;
  • Ma, Byung-Chol (Dept. of Chemical engineering, Chonnam National University)
  • Received : 2021.05.28
  • Accepted : 2021.06.25
  • Published : 2021.06.30

Abstract

Scrubbers that treat hazardous materials at workplaces have high treatment efficiency; however, the design is complex, and pumps need to be operated 24 hours a day, which can be costly. Therefore, to minimize the operating costs, small businesses do not install scrubbers, or operate them while circulation pumps are suspended. Hence, this study investigated the application of low-cost, high-performance scrubbers that can be used economically in small businesses. Low-cost, high-efficiency scrubbers are applied to bubble columns to utilize devices for hazardous chemical absorption treatment purposes, and for the development of these scrubbers, absorption performance was reviewed and the optimal application method was studied under certain conditions. The changes in the absorption performance of hazardous gas were studied in certain environments by varying the physical conditions, and the optimal application methods were analyzed. The results showed that, while it was possible to treat some of the gas flowing into the low cost, high performance scrubber, the treatment capacity was reduced. Performance degradation was prevented by supplying an absorption liquid, and a certain level of absorption was maintained depending on the amount of circulation. Based on this, three types of site application methods of low cost, high performance scrubbers were presented. In addition, the appropriate timing of circulation and anti freezing measures were also discussed.

사업장에서 유해가스를 처리하는 스크러버는 처리효율은 높으나 설계가 복잡하고 24시간 펌프를 가동시켜야 하므로 많은 비용이 소모될 수 있다. 따라서, 영세한 사업장에서는 스크러버를 설치하지 않거나 순환펌프의 작동을 중지한 상태로 스크러버를 운용하여 운영비를 최소화하고 있다. 이에, 본 연구에서는 소규모 사업장에서 경제적으로 활용할 수 있는 저비용 고효율 스크러버에 대한 적용방안을 연구하였다. 저비용 고효율 스크러버는 bubble column의 방식을 적용하여 유해화학물질 흡수처리 목적으로 장치를 활용하는 것으로, 이러한 스크러버의 개발을 위하여 실험을 통해 흡수성능을 검토하였으며 특정 조건에서 물리적 조건 변화에 따른 유해가스 흡수효율 변화 및 최적의 적용방안을 연구하였다. 그 결과, 저비용 고효율 스크러버로 유입되는 기체를 어느 정도 처리할 수는 있었으나 처리능력이 저하되는 문제가 발생하여 흡수액 공급을 통해 성능저하를 방지하고 순환량에 따라 일정 수준의 흡수율을 유지할 수 있는 것을 확인할 수 있었다. 이를 기반으로 최종적으로는 적정 순환시점 및 동결 방지방안을 포함한 저비용 고효율 스크러버의 현장 적용방안을 3가지 방식(type)으로 제시하였다.

Keywords

Acknowledgement

이 논문은 전남대학교 학술연구비(과제번호: 2017-2920) 지원에 의하여 연구되었음

References

  1. Coker, A.K., Ludwig's Applied Process Design for Chemical and Petrochemical Plants Fourth Edition Volume 2, Gulf Professional Publishing (2010)
  2. L.A. Prado Barragan, C. Hennigs, Biotransformation of Agricultural Waste and By-Products, The Food, Feed, Fibre, Fuel (4F) Economy, (2016)
  3. Besagni, G., Gallazzini, L., Inzoli, F., "On the scale-up criteria for bubble columns", Petroleum, 5(2), 114-112, (2019) https://doi.org/10.1016/j.petlm.2017.12.005
  4. Wilkinson, P.M., Spek, A.P., "Design parameters estimation for scale-up of high-pressure bubble columns", AIChE J., 38(4), 544-554, (1992) https://doi.org/10.1002/aic.690380408
  5. D.Legendre, Ron Zevenhoven, "A numerical Euler - Lagrange method for bubble tower CO2 dissolution modeling", Che. Eng. Res. Des., 111, 49-62, (2016) https://doi.org/10.1016/j.cherd.2016.04.010
  6. D.Legendre, Ron Zevenhoven, "Detailed experimental study on the dissolution of CO2 and air bubbles rising in water", Che. Eng. Sci., 158, 552-560, (2017) https://doi.org/10.1016/j.ces.2016.11.004
  7. Xiaokang Yan, Yan Jia, "Drag coefficient fluctuation prediction of a single bubble rising in water", Chem. Eng. Journal., 316, 553-562, (2017) https://doi.org/10.1016/j.cej.2017.01.137
  8. Warren L. McCabe, Julian C. Smith, Peter Harriott, Unit operations of chemical engineering, Mc Graw-Hill, 7th edition, 441-512, (2015)
  9. James R. Welty, Gregory L. Rorrer, David G. Foster, Fundamentals of momentum heat and mass transfer, Wiley, 6th edition, 556-591, (2015)
  10. P.H.Calderbank and M. Moo-Young, "The continuous phase heat and mass-transfer properties of dispersions", Chem. Eng. Sci., 16(1-2), 39-54, (1961) https://doi.org/10.1016/0009-2509(61)87005-X
  11. Liu Liu, Hongjie Yan, "Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution", Experimental Thermal and Fluid Science., 78, 254-265, (2016) https://doi.org/10.1016/j.expthermflusci.2016.06.011
  12. D. Colomber, D. Legendre, "Experimental study of mass transfer in a dense bubble swarm", Chem. Eng. Sci., 66(14), 3432-3440, (2011) https://doi.org/10.1016/j.ces.2011.01.020
  13. R. Krishna, M.I. Urseanu, "Rise velocity of a swarm of large gas bubbles in liquids", Chem. Eng. Sci., 54(2), 171-183, (1999) https://doi.org/10.1016/S0009-2509(98)00245-0
  14. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, (1978).
  15. H.D. Mendelson, "The prediction of bubble terminal velocities from wave theory", AIChE J. 13, 250-253, (1967) https://doi.org/10.1002/aic.690130213
  16. M. Jamialahmadi, C. Branch, Terminal bubble rise velocity in liquids, Chem. Eng. Res. Des. 72, 119-122, (1994)
  17. Don W. Green, Robert H. Perry, Perry's chemical engineers' handbook, Mc Graw-Hill, 8th edition, (2008)
  18. S.J.T.Hangx, Rate of CO2 mineralisation and geomechanical effects on host and seal formations, CATO Workpackage WP 4.1, (2005)