• Title/Summary/Keyword: 유해이온

Search Result 154, Processing Time 0.022 seconds

Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions (터널 지보용 숏크리트의 유해이온에 대한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • Shotcrete have become a deterioration which was exposed to harmful environments. In this study, in order to evaluate the deterioration properties of shotcrete, visual examination, compressive strength, adhesive strength, microstructural analysis were investigated up to the 60th weeks of exposure. The attack solutions for test are sodium sulfate and hydrochloric acid solution with different concentrations, respectively. From the results, although the compressive strength of shotcrete specimens and the adhesive strength between specimens and rocks were high at the early immersion age, they rapidly dropped in the subsequent phases, especially in 5% sodium sulfate and pH1 hydrochloric acid solution. With continued exposure, various harmful ions penetrated into the shotcrete specimen, reacted with the cement hydrate, and generated expansion substances. It was verified that the shotcrete specimens suffered a serious deterioration by chemical attack.

Performance Evaluation of Chloride and Sulfate Removal using Anion Exchange Resin in Saturated Ca(OH)2 Solutions (음이온 교환수지를 이용한 포화 수산화칼슘 수용액 내 염소이온 및 황산이온 제거 특성 평가)

  • Lee, Yun-Su;Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • Recently, self-healing concrete has been researched as maintenance and repair of concrete structures are important challenges we face. This paper focused on possibility of ion exchange resin as a novelty material directly and actively controlling harmful ions of concrete, whereas most self-healing concrete researches have been focused on methods to automatically filling and repairing internal crack of concrete. Because equilibrium properties between ion exchange resin and harmful ion is important before design of cement mixing proportion, it was conducted to remove chloride or sulfate in saturated $Ca(OH)_2$ solutions containing NaCl or $Na_2SO_4$. The removal performance was analyzed using kinetic equation and isothermal equation. Consequently, the removal properties of anion exchange resin were relatively more dependent on pseudo second reaction equation and Langmuir equation than pseudo first reaction equation and Freundlich equation. And it was concluded that each chloride and sulfate can be removed to the maximum 1068 ppm and 1314 ppm.

유해가스 흡착용 이온교환 부직포의 합성 및 흡착특성

  • Yang, Gab-Seok;Kim, Min
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.160-163
    • /
    • 2003
  • 산업시설의 급속한 팽창과 더불어 날로 증가하는 환경오염 문제는 대기 배출오염원과 그 종류가 다양해지고 있어 점차 인체에 유해한 대기 오염이 중요한 사회적 문제가 되고 있다. 오염물질 중 암모니아를 포함한 유해 가스는 화학공정에서 뿐만 아니라 양돈양계장, 비료공장, 사료제조공장, 분뇨처리장 등으로 그 발생원이 다양하며 질소를 함유한 유기물이 생물학적으로 분해될 때 생성된다.(중략)

  • PDF

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete II: Examination of Critical Crack Width (미세균열이 콘크리트의 염소이온 침투에 미치는영향 II: 임계 균열폭의 고찰)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.707-715
    • /
    • 2007
  • The vulnerability of concrete to its environment is significantly dependent on the fact that concrete is a porous material. For well-consolidated and well-cured concrete, its service life is a very long and an entrance of aggressive substance might be only pores. However, for cracked concrete, cracks should be preferential channel for the penetration of aggressive substance such as chloride ions. The effect of crack on chloride penetration depends on its size for example, crack width and crack depth. The purpose of this study is examining the effect of crack width and crack depth on chloride penetration. In order to visualize chloride penetration via cracks, RCM (rapid chloride migration) testing is accomplished. Crack width is examined using an optical microscope and CMOD value is used to estimate average crack width. From the examination on the trend of chloride diffusion coefficients of concrete specimens with various crack widths, a critical crack width and a critical crack depth are found out.

Efficient bio-gas desulfurization purification technology development Using ion-exchange fibers (이온교환섬유를 이용한 바이오가스 고효율 탈황정제기술 개발)

  • Tak, Bong-Yeol;Tak, Bong-Sik;Min, Gil-Ho;Lee, Sang-Min;Lee, Won-Gu;Lee, So-A
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.116-116
    • /
    • 2011
  • 바이오 가스 플랜트의 혐기소화 공정에서 발생하는 바이오 가스는 중 유해가스인 황하수소($H_2S$)는 부식성 가스로 수천 PPM농도를 함유하여, 발전기나 가스보일러로 이용하는 경우에는 $H_2S$를 제거하는 탈황공정이 반드시 필요하다. 탈황방식에는 산화철 탈황(건식 탈황)과 생물 탈황이 현재 많이 사용되고 있어나 산화철 탈황은 산화철 pellet이 유화철에 변화하면 탈황능력이 저하되어 pellet을 교환해야 하며 많은 비용이 발생한다. 생물 탈황 방식은 유황산화세균의 서식활동조건(온도, 반응시간, 산소량)확보가 반드시 필요하여 높은 운전기술을 필요로 한다. 본 연구에서는 바이오가스 전처리 기술 중 활성탄 또는 약액을 이용한 기존의 탈황정제방식보다 흡착성능이 뛰어난 이온교환섬유를 이용하여, 황화수소($H_2S$)를 95% 이상 제거할 수 있는 고효율 섬유상 이온촉매 악취제거 시스템 개발을 수행하였다. 이온교환섬유는 방사선 조사를 이용하여 부직포에 라디칼을 인위적으로 형성시켜(그라프트 중합) 양이온 또는 양이온을 교환할 수 있도록 제조된 섬유상의 흡착제로, 이온교환 섬유의 화학적 이온교환과 물리적 흡착 및 탈착반응이 동시에 발생되고, 활성탄/실리카켈 보다 흡착능력이 2~4배 높다. 또한 이온섬유의 재생기능을 이용하여 장기적 다양한 악취($H_2S$, $NH_3$, 아민계, 메르갑탄류, 알데히드 등) 및 유해가스(VOCs, NOx, SOx) 등을 95% 이상 제거할 수 있다.

  • PDF

Synthesis of Multifunctional AN-co-(MMA/IA) Fibrous ion-exchanger by Hydrolysis and Adsorption Properties for Trace Transition Elements (가수분해에 의한 AN-co-(MMA(IA) 다관능성 섬유이온교환체의 합성 및 미랑 전이금속 흡착특성)

  • 황택성;이선아;황계순
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.765-773
    • /
    • 2001
  • In In order to remove harmful trace elements such as $Co^{2+}$, $Ni^{2+}$ , $Cr_2O_7\;^{2-}$ from water, we synthesized AN-co-(MMA/IA) according to various mole ratio of monomers and spun by wet-spinning. And multi-functional PAN ion exchangers were prepared by hydrolysis. We observed structure, degree of functionalization, ion exchange capacity, distribution coefficient and mechanical properties for ion exchanger. Anion exchange capacity decreased in 4.5 ~ 4.2 meq/g with increasing of IA content and cation exchange capacity increased in 1.8 ~ 2.2 meq/g. Tensile strength of the ion exchanger increased up to 0.008 mol% IA content and appeared maximum value by 216$kg/cm^2$Distribution coefficient for AN-co-(MMA/IA) ion exchanger appeared maximum value for Co(II), Ni(II) in pH 5-6 range and for Cr(III) in pH 3-4 range. And the adsorption capacity was in the order of Cr(III) > Co(II) > Ni(II) for multicomponent in continuous process.

  • PDF

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.