• Title/Summary/Keyword: 유해가스

Search Result 639, Processing Time 0.035 seconds

Assessing Greenhouse and Noxious Gas Emissions from Stevedoring Work at the Port of Incheon (인천항 육상하역 작업에 따른 온실가스 및 유해가스 발생 추정)

  • Roh, Younghoon;Chang, Young-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.4
    • /
    • pp.133-150
    • /
    • 2015
  • This study estimates greenhouse and noxious gas emissions caused by cargo-handling equipment at the Port of Incheon in 2013 by applying the NONROAD Model (U.S. EPA). The port emitted 838.4 tons of NOx and 82,747 tons of CO2. The estimates are 2.4 times higher for NOx and 1.3 times higher for CO2 than those of the Port of Los Angeles. Emissions from general cargo-handling equipment are five times more than those from container cargo-handling equipment. Among the three ports comprising the Port of Incheon, the emissions at the North Port, which handles raw materials for industry are relatively higher than those at the other ports. Compared to the study conducted by Chang et al. (2013, 2014), this study finds that CO2 and NOx emissions per cargo-handling equipment are 10 times higher than the corresponding amounts per ship.

A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device (수전해 수소충전소 부품별 유해위험요인 분석)

  • Seo, Doo-Hyoun;Rhie, Kwang-Won;Kim, Tae-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • In order to invigoration the hydrogen economy, production of hydrogen needed for hydrogen charging stations and hydrogen fuel cells is needed. Generally, it is reforming used to coal fuel or natural gas. Other technologies include water electrolysis using pure water. Among these water electrolysis technologies, development is mainly carried out using PEM(Polymer Electrolyte Membrane electrolysis). In this study, the company aims to identify potential harmful hazards to PEM electrolysis hydrogen stations in the development stage among hydrogen charging stations. In order to find the hazardous factors in the facilities of the electrolysis and hydrogen charging stations, we were analyzed by Failure Mode & Effect Analysis(FMEA).

Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.543-563
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min) initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3% for NO and 84.7% for $NO_2$ were observed at the poser consumptions of 19.8 and 29W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF