• Title/Summary/Keyword: 유한 변형

Search Result 1,972, Processing Time 0.032 seconds

Analysis of collapse course of mudstone cut slope and suggest countermeasure (이암 절토 사면의 붕괴 요인 분석 및 대책방안 제시)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.123-131
    • /
    • 2018
  • This study analyzed the collapse course of a mud stone cut slope during the construction of a express and suggested a countermeasure. Experiments were carried out on bedrock mudstone to investigate the engineering characteristics and the slope stability analysis at the time the design was reviewed. In addition, stability analysis, considering the strength softening characteristics of the slope due to the Swelling-Slaking phenomenon, was also performed. As a result of the Swelling-Slaking test, the slake durability was Low-Medium, and the swell potential was Very Low. A review of the stability analysis performed at the time of the design showed different results from the actual results because LEM analysis had been performed without considering the engineering characteristics of mudstone. As a result of additional stability analysis considering the strength softening characteristics, the slope collapse point and the maximum shear strain point of the stability analysis were the same and the standard safety factor was not satisfied. As a countermeasure, a slope mitigation method was found to be most appropriate. The mitigation slope was calculated by Finite element Analysis. A comparison with BIPS to determine the applicability of a mitigation slope revealed most of the unconsolidated mudstone.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Simulation for application of pumping-and-treatment system to the recovery of non-aqueous phase liquids (NAPLs) at and below the water table (토양의 포화지대에 분포하는 고밀도비수상액체(DNAPL)와 저밀도비수상액체(LNAPL)의 펌핑 제거공정에 대한 모사)

  • 김주형;이종협
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.51-61
    • /
    • 1997
  • The objective of this study is to evaluate the feasibility of Pumping-and-Treatment system (PTS) for remediation of the saturated zones contaminated with NAPLs. A simulation is carried out for the removal of DNAPLs (denser-than-water non-aqueous phase liquids) and LNAPLS (lighter-than-water non-aqueous phase liquids) distributing at and below the water table. In the study, LNAPL and DNAPL are assumed to be n-hexane and 1,1-dichloroacetone, respectively. The model system studied consists of four heterogeneous soil layers with different permeabilities. Groundwater flows through the bottom layer and a pumping well is located under the initial water table. The time-driven deformation of the water table and removal efficiency of contaminants are estimated after vacuum application to the inlet of the well. In the calculation, FVM (Finite Volumetric Method) with SIMPLEC algorithm is applied. Results show that removal efficiencies of both DNAPL and LNAPL are negligible for the first 5 days after the PTS operation. However, when the cone-shape water table is formed around the inlet of the pumping well, the rapid removal rate is obtained since NAPLs migrate rapidly through the curvature of the water table. The removal efficiency of DNAPL is estimated to be higher than that of LNAPL due to the gravity. The results also show that the fluctuation or cone-shaped depression of the water table enhances the removal efficiency of NAPLs in saturated zones. The simulation results could provide a basis of the PTS design for the removal of NAPLs in saturated zones.

  • PDF

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

Diagonalized Approximate Factorization Method for 3D Incompressible Viscous Flows (대각행렬화된 근사 인수분해 기법을 이용한 3차원 비압축성 점성 흐름 해석)

  • Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.293-303
    • /
    • 2011
  • An efficient diagonalized approximate factorization algorithm (DAF) is developed for the solution of three-dimensional incompressible viscous flows. The pressure-based, artificial compressibility (AC) method is used for calculating steady incompressible Navier-Stokes equations. The AC form of the governing equations is discretized in space using a second-order-accurate finite volume method. The present DAF method is applied to derive a second-order accurate splitting of the discrete system of equations. The primary objective of this study is to investigate the computational efficiency of the present DAF method. The solutions of the DAF method are evaluated relative to those of well-known four-stage Runge-Kutta (RK4) method for fully developed and developing laminar flows in curved square ducts and a laminar flow in a cavity. While converged solutions obtained by DAF and RK4 methods on the same computational meshes are essentially identical because of employing the same discrete schemes in space, both algorithms shows significant discrepancy in the computing efficiency. The results reveal that the DAF method requires substantially at least two times less computational time than RK4 to solve all applied flow fields. The increase in computational efficiency of the DAF methods is achieved with no increase in computational resources and coding complexity.

Stability Analysis of Excavation Slope on Soft Ground (연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Jae Hong;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • To investigate the stability problem of irrigation-drainage channel excavation slope on soft ground, analyzed the behavior of the soft ground with excavation slope by the limit equilibrium method and the finite element method, and compared with field tests. The results of this study were summarized as follows; 1. When rapid drawdown the water level, the crack was occurred by the effect of the excess pore water pressure, and the pore water pressure was decreased slowly. 2. As the width of excavation was larger, the crack width was larger. And, excavated depth was deeper, the progressive failure was appeared. 3. When the soft ground excavation was small-scale, the minimum safety factor was more effected by cohesion(1.0, 1.5, 2.0, 2.5, 3.0) than excavated slope inclination(1:l, 1:1.5, 1:2). 4. As excavation was progressed, the settlement occurred on the top-slope due to plastic domain, and heaving was occurred at the bottom of excavation. 5. The maximum shear stress was appeared greatly as the base part of slope went down. Because of the increase of the maximum shear stress, tension area occurred and local failure possibility was increased. 6. As the excavation depth was increased, the maximum shear strain was appeared greatly at the base of slope and distribution pattern was concentrated beneath the middle of slope.

  • PDF

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

An Structural Design for Cyclone Tower's Connections Using Diagrid System (다이아그리드 구조시스템의 접합부개발과 성능평가)

  • Lee, Se-Jung;Lee, Seong-Hui;Kim, Jin-Ho;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • Recently, High-rise building are irregular-shaped to be city landmarks and function as vertical cities to enable the efficient use of land. 3T (Twisted, Tilted & Tapered) designs are being suggested for irregular buildings and studies to develop new structural system have been actively made to satisfy slender shape ratio. In diagrid system, not only gravity load but also lateral load is delivered based on the triangular shape of diagrid, so most of columns are eliminated. Because shearing force is delivered by the axial behavior (tensile/compressive) of diagrid to minimize shearing deformation, the system is more applicable to irregular buildings than existing system where shearing force is delivered by the columns. In this study, the process of selecting connection details and the structural safety of the selected details are verified using the finite element analysis with focus given to the construction overview of the Cyclone Tower. However, the relersed methods of stress concentration are suggested and the performance of stress concentration relieves that it's suggested for the appropriate cap plate thickness and extended length.

  • PDF