• Title/Summary/Keyword: 유한 단층 모델

Search Result 57, Processing Time 0.026 seconds

Development of Stochastic Finite Element Model for Underground Structure with Discontinuous Rock Mass Using Latin Hypercube Sampling Technique (LHS기법을 이용한 불연속암반구조물의 확률유한요소해석기법개발)

  • 최규섭;정영수
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-154
    • /
    • 1997
  • Astochastic finite element model which reflects both the effect of discontinuities and the uncertainty of material properties in underground rock mass has been developed. Latin Hypercube Sampling technique has been mobilized and compared with the Monte Carlo simulation method. To consider the effect of discontinuities, the joint finite element model, which is known to be suitable to explain faults, cleavage, things of that nature, has been used in this study. To reflect the uncertainty of material properties, multi-random variables are assumed as the joint normal stiffness and the joint shear stiffness, which could be simulated in terms of normal distribution. The developed computer program in this study has been verified by practical example and has been applied to analyze the circular cavern with discontinuous rock mass.

  • PDF

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials (흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구)

  • Dongheon Kang;Haesang Yang;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.261-269
    • /
    • 2024
  • In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet (단층 그래핀시트의 모드 II 및 혼합모드 파괴)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • The mode II fracture behavior of a single-layer graphene sheet (SLGS) containing a center crack was characterized with the results of an atomistic simulation and an analytical model. The fracture of zigzag graphene models was analyzed with molecular dynamics and the mode II fracture toughness was found to be $2.04MPa{\sqrt{m}}$. The in-plane shear fracture of a cellular material was analyzed theoretically for deriving the $K_{IIc}$ of SLGS, and FEM results were obtained. Mixed-mode fracture of SLGS was studied for various mode I and mode II ratios. The mixed-mode fracture criterion was determined, and the obtained fracture envelope was in good agreement with that of another study.

Epicardial and endocardial wall motion visualization of the left ventricle with dynamic deformable solids (역동적 변형 솔리드를 이용한 좌심실 내.외벽의 운동 가시화)

  • 최수미;이유경;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.670-672
    • /
    • 2000
  • 본 논문에서는 단일광자방출 전산화단층촬영영상 (SPECT)을 이용하여 좌심실의 내.외벽의 운동을 분리하여 추적하는 방법을 제시한다. 좌심실의 운동은 크게 평행이동, 회전이동, 비강체 변형으로 나뉘어 분석된다. 운동 추적을 위해 사용된 역동적 변형 솔리드는 물체중심 변동 좌표계로써 특징점들의 모드형태벡터를 사용하고, 좌심실 역동성을 유한요소방법에 의해 시뮬레이션한다. 또한, 변형 모델에 대해 묵시적으로 표준화된 parameterization을 하지 않고, 의료영상으로부터 얻은 자료값을 직접 이용하기 위해 노드간 보간함수로써 3차원 가우시안 함수를 사용한다. 그리하여 보다 자연스러운 방식으로 연속적으로 변화하는 좌심실의 운동을 추적할 수 있다. 이러한 분리된 내.외벽 운동 분석은 운동 기능에 이상이 있는 심질환 분석을 보다 효과적으로 도울 수 있다.

  • PDF

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

Structural Parameters and Modeling Technique for Prediction of Dynamic Response of a One-story Building with a Flexible Diaphragm (유연한 지붕을 갖는 단층 건물의 동적응답 예측을 위한 해석모델링 방법과 구조변수의 설정)

  • ;Donald W. White
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.271-280
    • /
    • 2003
  • The purpose of the study presented in this paper is to develope the general model for capture of the linear and nonlinear response of a flexible diaphragm building in which there are significant contributions from the out-of-plane walls. Two single-story single-diaphragm half scale reinforced masonry buildings were tested by researchers at the United States Army Construction Engineering Research Laboratory (CERL). The first had a metal deck diaphragm. The second specimen had a diaphragm with a single layer of diagonal lumber sheathing, A multiple degree of freedom (MDOF) approach is adopted in this paper. The required stiffnesses and strengths of the components within this model are determined.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

A three-dimensional finite element analysis for initial stress of maxillary incisiors during activation of upper utility arch wire (Utility Arch Wire 적용시 상악 중절치 및 측절치의 초기 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lee, Jong-hyun;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.411-424
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution of initial compressive and tensile stress when anterior section of upper utility arch was activated crown lingual torque of $5^{\circ},\;10^{\circ},\;15^{\circ}$ through three-dimensional finite element analysis. For this study the finite element model of upper central and lateral incisors, 1st. and 2nd. premolars and 1st. molars and each periodontal membrane and upper utility arch were made. From the solutions of ANSYS the followings were obtained. 1. $5^{\circ},\;10^{\circ},\;15^{\circ}$ crown lingual torque produce the almost similar distribution and measurement of initial compressive and tensile stress. 2. Acivated upper utility arch torqued central inciors lingually and lateral incisors labially.

  • PDF

Stress Patterns in the Reconstructed Double Bundles of the Anterior Cruciate Ligament in Response to an Anterior Tibial Load and Rotatory Load: an Analysis using a 3-Dimensional Finite Element Model (삼차원 유한 요소 모델을 이용한 전방십자인대 이중다발 재건술 후 전방 전위 및 회전 부하에 따른 이식건 응력 양상 분석)

  • Seo, Young-Jin;Song, Si Young;Ahn, Jung Tae;Kim, Yoon-Sang;Ko, Jun Ho;Jang, Seong-Wook;Yoo, Yon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The aim of this study was to determine the patterns of the stress distribution within the reconstructed anterior cruciate ligament (ACL) double bundles in response to an anterior tibial load and rotatory load at $45^{\circ}$ flexed knee model by use of a 3-dimensional finite element analysis (FEM). Materials and Methods: The $0^{\circ}$ and $45^{\circ}$ flexed 3-D knee model were reconstructed based on the high resolution computed tomography (CT) images from the right knee of a healthy male subject. To simulate double bundle ACL reconstruction, in $0^{\circ}$ analytic model, four 7 mm diameter tunnels were created at the center of each anteromedial (AM) and posterolateral (PL) footprints on the femur and tibia. The grafts were inserted into the corresponding bone tunnels and then reconstructed knee model was flexed to $45^{\circ}$. As a next step, the 5 mm anterior tibial load and internal rotational load of $10^{\circ}$ were applied on the final Computer aided design (CAD) model. And then stress patterns of each bundle were assessed using a finite element analysis. Results: In response to the 5 mm of anterior tibial load, the AM bundle showed increased stresses around the tibial and femoral attachment sites; especially in the anterior aspect of the bundle. In the PL bundle, the highest stress concentration was also noticed on the anterior aspect of the bundle. Under $10^{\circ}$ internal rotational load, the stress concentration was predominant around the anterior aspect of the tibial attachment site within the AM bundle. The PL bundle also showed highest stress concentration on the anterior aspect of the bundle. Conclusion: Although the stress patterns were not identical among the AM and PL bundle, there were common trends in the stress distribution. The stress concentration was predominant on the anterior aspect of both bundles in response to the anterior tibial load and rotatory load.

  • PDF

Numerical Formulation of Thermo-Hydro-Mechanical Interface Element (열-수리-역학 거동 해석을 위한 경계면 요소의 수식화)

  • Shin, Hosung;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.45-52
    • /
    • 2022
  • Because discontinuity in the rock mass and contact of soil-structure interaction exhibits coupled thermal-hydromechanical (THM) behavior, it is necessary to develop an interface element based on the full governing equations. In this study, we derive force equilibrium, fluid continuity, and energy equilibrium equations for the interface element. Additionally, we present a stiffness matrix of the elastoplastic mechanical model for the interface element. The developed interface element uses six nodes for displacement and four nodes for water pressure and temperature in a two-dimensional analysis. The fully coupled THM analysis for fluid injection into a fault can model the complicated evolution of injection pressure due to decreasing effective stress in the fault and thermal contraction of the surrounding rock mass. However, the result of hydromechanical analysis ignoring thermal phenomena overestimates hydromechanical variables.