• 제목/요약/키워드: 유한회전

Search Result 584, Processing Time 0.022 seconds

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

STRESS DISTRIBUTION FOR NITI FILES OF TRIANGULAR BASED AND RECTANGULAR BASED CROSS-SECTIONS USING 3-DIMENSIONAL FINITE ELEMENT ANALYSIS (만곡 근관에서 삼각 혹은 장방형 단면 구조의 니켈-티타늄 파일 응력 분포에 관한 3차원 유한요소 연구)

  • Kim, Hyun-Ju;Lee, Chan-Joo;Kim, Byung-Min;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The purpose of this study was to compare the stress distributions of NiTi rotary instruments based on their cross-sectional geometries of triangular shape-based cross-sectional design, S-shaped cross-sectional design and modified rectangular shape-based one using 3D FE models. NiTi rotary files of S-shaped and modified rectangular design of cross-section such as Mtwo or NRT showed larger stress change while file rotation during simulated shaping. The stress of files with rectangular cross-section design such as Mtwo, NRT was distributed as an intermittent pattern along the long axis of file. On the other hand, the stress of files with triangular cross-section design was distributed continuously. When the residual stresses which could increase the risk of file fatigue fracture were analyzed after their withdrawal. the NRT and Mtwo model also presented higher residual stresses. From this result, it can be inferred that S-shaped and modified rectangular shape-based files were more susceptible to file fracture than the files having triangular shape-based one.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Performance Review of a Cycloid Speed Reducer for Ship Transport Vehicles using FEM (유한요소해석을 이용한 선박수송차량용 사이클로이드 감속기의 성능 검토)

  • Kang, Hyung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2061-2066
    • /
    • 2011
  • A cycloid speed reducer is one of the rotational speed regulation devices of the machinery. A cycloid speed reducer has an advantage of transmitting high torque, but is known to be unsuitable for high speed rotation. However, it is almost impossible in an analytical method to find a use limit speed when installing such a speed reducer in a 200ton loading transporter. In this research the cycloid reducer was simulated to get its performance depending on friction energy loss in time domain by using by LS-DYNA. The maximum torque of the cycloid speed reducer is 3.5ton-m, so the comparison of analysis results between a case of 60rpm rotation and a case of 162rpm rotation with such a torque showed the following results. In the case of 60rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 463MPa and 507MPa. Lost power due to friction was 50kW; In the case of 162rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 550MPa and 538MPa. Lost power due to friction was 175kW, which was shown to be almost impossible to use.

A Study on the Vibration Characteristics of Critical Speed for Rotor Shaft (회전샤프트의 위험속도에 관한 진동특성 연구)

  • Son, Choong-Yul;Lee, Kang-Su;Ryu, Young-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.961-971
    • /
    • 2008
  • In the design of a rotor shaft, care should be taken to minimize vibration by taking into account the sources of vibration. In addition, the intensity critical speed, stability, and other related aspects of the system must be considered. especially when it is operated at a critical speed, it is important to address issues related to vibration, as an increase in the whirling response of the rotor shaft can cause damage to the shaft, destruction of the rotor parts, and detrimental abrasions on the bearings. In this thesis, the vibration characteristics of a rotor shaft are investigated through the use of the finite element method. Variations of the diameters and lengths were used to determine the effect of a rotor shaft using Beam No.188(3D linear strain beam) in ANSYS version 11.0 as a universal interpretation program for finite elements. Special care was taken to prevent excessive vibration, which can result from resonance at the initial stage, in the formulation of a dynamic design for a rotor shaft through calculations while changing the diameters and the lengths of the shaft. Moreover, the dynamic characteristics of the critical speed, total mass, D/L(diameter to length) ratio, and natural frequency were verified. Furthermore, the rotor shaft applied by bearing element was calculated and compared by using Combi No. 214(2-D spring-damper bearing).

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

A Study on Characteristic of Cogging Torque due to Assembly Tolerances of Magnet on Rotor and Evaluation of Noise and Vibration in Brushless DC Motor (BLDC 전동기에서 회전자 자석의 조립 공차에 따른 코깅토크 특성변화와 소음진동 불량 평가에 관한 연구)

  • Yun, Seung Ho;Ro, Seung Il;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.86-91
    • /
    • 2016
  • The cogging torque of a brushless dc (BLDC) motor results from the interaction between permanent magnets and iron core, and it causes noise and induce vibrations. During a manufacturing process, assembly tolerances lead to the change of the electromagnetic structure of a BLDC motor where permanent magnets are not properly glued to the surface of rotor core. In this paper, the effect of magnet separation from the surface of rotor core on the cogging torque is investigated due to assembly tolerance. The relationship with key design parameters is considered such as separation between magnets and rotor core, the number of magnets having separation, as well as the several types of arrangements among neighboring magnets. Finite element method (FEM) has been used to analyze a BLDC motor, and the allowable assembly tolerance is proposed to prevent generating noise and vibrations. Within proposed assembly tolerance, it is concluded that the cogging torque of a BLDC motor is decreased, and hence noise and vibrations.

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn (RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술)

  • Choi, Juhwan;Choi, Jin Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • The analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of the computational dynamics. This technique has been developed and improved in RecurDyn solver. This paper reviews the formulation which is applied in the RecurDyn solver. Basically, in order to solve the multi-flexible-body dynamics problem, an incremental finite element formulation using a corotational procedure is used. In particular, in order to solve the rigid and flexible bodies together, a constraint equation between a rigid body and a flexible body is applied, in which a virtual body and a flexible body joint are introduced.

A Numerical Study on the Semi-Rigid Behavior of Steel Tubular Column to H Beam Connection with Exterior Square-Plate Diaphragms (직각판형 외다이아프램 각형강관기둥-H형강보 접합부의 방강접거동에 관한 해석적연구)

  • Chae, Yong-Soo;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.289-299
    • /
    • 2001
  • The purpose of this study was to analyze the characteristics of semi-igid behavior of the steel tubular column to H-beam connection reinforced with exterior square-plate diaphragms and to check the main parameters that affect this behavior. Steel tube connections without interior diaphragm and/or complicated exterior diaphragm show the considerable flexibility due to out of-plane deformation of tube flange. For the exact analysis well-reflected the effect of this flexibility on the overall frame performance. it need to find out the moment-rotation curve function that well trace the result of experiment in the whole region and the function should be simply transformed into an adequate form for the nonlinear analysis program. After collecting several test data same to the connection type considered. we carried out FEM analysis using ANSYS for the assumed beam-to-column connection developed from the simple tension test and the results are compared with experimental values. Based on the parametric study. we proposed the moment-relation curve function and performed the multiple-regression analysis procedure for three parameters consisting of this function with the main geometric parameter of this connection type.

  • PDF