• Title/Summary/Keyword: 유한상태기계

Search Result 204, Processing Time 0.028 seconds

On the Explosive Welding Characteristics of Steel-Titanium Dissimilar Materials Using finite Element Method (유한요소법을 이용한 강-티타늄 이종소재의 폭발 용접조건 해석)

  • Kim, Chung-Kyun;Kim, Myung-Koo;Sim, Sang-Han;Moon, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.825-831
    • /
    • 1996
  • Using the two-dimensional hydrocode HI-DYNA2D, a calculation on the explosive selding of dissimilar plates(Steel Titanium) was made for the pressure, temperature, velocity and impact ingles adjacent to the collision point during the welding process. The FEM result indicates that optimal stand-off distance of initially parallel set-up is 3-5mm for various values of the explosive thickness. The calculation shows that when the explosive thickness is around 30mm, the temperature of welding point which is strongly related to the metallic jet formation is 2, 000-3, 500K for the given stand-off distance.

Two-Dimensional Analysis of Cross-ply Laminates with Transverse Cracks Based on the Assumed Crack Opening Deformation (균열열림변형을 고려한 모재균열이 있는 직교적층판의 2차원 해석)

  • 이재화;홍창선;한영명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2002-2014
    • /
    • 1991
  • A refined two-dimensional analysis method, taking into account the crack opening deformation, is proposed for the evaluation of stress distributions in transverse cracked cross-ply laminates. The interlaminar stresses which play an important role in laminate failure are evaluated using the concept of interface layer. A series expansion of the displacements is employed and the thermal residual stresses and Poisson's effects in the laminated are taken into consideration in the formulation. The stress distributions are compared with finite element results. The proposed method represents well the characteristics of the stress distributions. The through-the-thickness variation of the stress distribution is remarkable near the transverse crack due to the crack opening deformation. The interlaminar stresses have significant values at the transverse crack tip and the proposed analysis can be applied as a basis for the prediction of the induced delamination onset by using appropriate failure criteria.

Development of Intelligent Multi-Agent in the Game Environment (게임 환경에서의 지능형 다중 에이전트 개발)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.69-78
    • /
    • 2015
  • Recently, research on the multi-agent system is developed actively in the various fields, especially on the control of complex system and optimization. In this study, we develop a multi-agent system for NPC simulation in game environment. The purpose of the development is to support quick and precise decision by inferencing the situation of the dynamic discrete domain, and to support an optimization process of the agent system. Our approach employed Petri-net as a basic agent model to simplify structure of the system, and used fuzzy inference engine to support decision making in various situation. Our experimentation describes situation of the virtual battlefield between the NPCs, which are divided two groups, such as fuzzy rule based agent and automata based agent. We calculate the percentage of winning and survival rate from the several simulations, and the result describes that the fuzzy rule based agent showed better performance than the automata based agent.

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators (압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어)

  • Lee, Dong-Ho;Choe, Seung-Bok;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.

Optimal feedback control of a flexible one-link robotic manipulator (유연한 단일링크 로봇 조작기의 최적귀환제어)

  • 하영균;김승호;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.923-934
    • /
    • 1987
  • A flexible one-link robotic manipulator is modelled as a rotating cantilever beam with a hub and tip mass. An active control law is developed with consideration of the distributed flexibility of the arm. Equation of motion is derived by Hamilton's principle and, for modal control, represented as state variable form using Galerkin's mode summation method. Feedback coefficients are chosen to minimize the linear quadratic performance index(PI). To reconstruct the complete state vector from the measurements, an observer is proposed. In order to suppress vibration of the manipulator arm to desirable extent and to obtain accuracy of the positioning, weighting factor of input in PI is adjusted. Spillover effect due to the controller which controls several important modes is examined. Experiment is also performed to validate the theoretical analysis.

The Transient Temperature Distribution in A Fluid-to-Solid System (유체-고체열교환기내에서의 비정상온도분포)

  • Kim, Hyo Kyung;Lee, Taik Sik;Kim, Suk Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.3
    • /
    • pp.156-163
    • /
    • 1977
  • 길이방향의 열전도효과가 비교적 큰유체- 고체 열교환계내에 일정한 조ㅍ은 온도를 가진 유체가 유입될 때 이에 따른 비정상 온도분포가 해석되었다. 이러한 계를 기술하는 연립편미분 방정식의 수치해가 유한차분법에 의해 구해졌으며, 열전도가 무시된 경우에 대한 해석적 해를 구하여 위의 결과를 검증하였다. 한편 이상화된 모델에 대한 실험을 행하고 이 결과를 앞서 구한 수치해와 비교 검토하였다. 여기서 구해진 온도분포를 이용하여 축열효율${\eta}_A$${\eta}_B$${\eta}_A$는 시간 t에서의 축열량과 정상상태에 도달했을 때의 축열량의 비로 , 그리고 ${\eta}_B$는 시간 t 동안의 축열된 양과 공급된 열량의 비고 정의하여 온도분포와 효율들에 애하여 시간변수 .tau., 위치변수 .xi.와 무차원 열확산율 .betha.가 미치는 영향을 조사하였다. 이에 따르면 온도는 .betha. 가 적어짐에 따라 점점 가파르게 분포되고 한편 ${\eta}_A$는 .tau.가 점점 커지거나, .xi.가 작아질수록 좋아지는 것을 알 수 있다. 또한 ${\eta}_B$${\eta}_A$와는 정반대의 경향을 보여주어 축열계의 최적상태가 존재함을 알 수 있다.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

The Analysis and Test of Dynamic Characteristics for Line Starting Permanent Magnet Motor (유도성 기동 영구자석 전동기의 기동특성 해석 및 시험)

  • Hwang, Sang-Yeon;Cha, Jong-Hwan;Han, Sang-Yul;Cho, Dong-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.22-24
    • /
    • 2003
  • 유도성 기동 영구자석 전동기의 경우 고효율성 및 자기동성으로 인해 현재 산업계에서 많이 사용되고 있는 유도기를 대체할 가능성이 크다. 정상 상태에서는 영구자석 동기 전동기로 작동하며 기동시에는 유도바의 역할로 유도기로서 동기화에 이르게 된다. 이때, 적절한 설계가 이루어지지 않으면 기동 또는 동기화에 실패할 수 있으므로 기동시의 과도특성 해석은 매우 중요하다. 본 논문에서는 기계 방정식과 결합된 유한요소해석 프로그램을 이용하여 전동기의 기동 및 동기화 특성을 해석하고자 한다. 해석의 타당성을 검증하기 위하여 시험용 전동기를 제작하고 과도 상태 시험을 수행하여 해석결과와 비교한다.

  • PDF