Park, Jong-Pyo;Jeong, Soon-Chan;Yu, Chang-Hwan;Won, Chang-Yeon
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.321-326
/
2012
장기유출모형을 이용하여 농업용저수지 유입량을 예측하고 농업용수 필요수량 및 홍수기 저수지 홍수조절을 통한 방류량 데이터를 이용하여 장기간에 대한 농업용저수지 저수율을 계산하였다. 계산결과와 실측 저수율 데이터의 비교 검증을 통하여 모형의 적용성을 평가하였다. 대상유역은 담양댐 지점이며 유역면적은 $47.2km^2$ 이며 주 하천 연장은 12.0km 이다. 담양댐은 저수용량에 비하여 유역면적이 작기 때문에 댐 계획 당시 순창군 구림면에 유역면적 $18.4km^2$ 인 2개의 보를 축조하여 유역변경방식으로 간접유역 유출량을 비관개기 및 홍수시에 도수하며 최대 도수량은 $10m^3/s$이다. 장기유출모의는 한국수자원공사(2001)에서 수행한 전역최적화기법인 콤플렉스 혼합진화기법을 통하여 추정된 나주지점의 모형보정 성과를 활용하였으며 모의기간은 1981-2010년(30년)이다. 장기유출모의 결과 담양댐 유역의 평균 유출율은 67% 인 것으로 분석되었다. 농업용수 필요수량은 한국농촌공사에서 산정한 연도별 필요수량 산정결과를 이용하여 실측 농업용수 월별 방류량 자료를 기준으로 관개개간인 4월 21일-9월 20일(163일)동안 월별로 분배하여 적용하였다. 홍수조절은 기존 댐 상시만수위, 홍수기제한수위 데이터를 근거로 운영하였다. 일별저수지 운영모형은 미공병단의 HEC-5 모형을 이용하였으며 한국농어촌공사 농촌용수종합 정보시스템(RAMIS)의 댐 일별 저수율 현황과 기존저수지 일별 저수지 모의운영결과를 비교 검증하였다. 모형수행결과 실측저수율과 모형수행결과의 상관계수는 0.93 인 것으로 분석되었다. 연구결과, 장기유출모의 결과와 연계하여 농업용수, 하천유지용수, 홍수조절을 고려한 저수지 운영을 통하여 비교적 정확하게 농업용저수지 저수율을 예측할 수 있을 것으로 판단된다. 본 연구성과를 바탕으로 농업용저수지의 장기적인 용수수급현황을 예측하여 효율적인 용수공급계획을 수립할 수 있을 것으로 기대된다.
해양 HNS(Hazardous and Noxious Substances)의 유출 사고 시, 막대한 인명 피해와 환경 훼손을 피하기 위해 유출 사고 조기 예측과 정확한 확산 경로를 예측하는 것이 필수적이다. 본 연구의 최종목적은 전산유체역학을 이용하여 HNS사고가 발생하였을 때 위험구역을 적절히 예측할 수 있는 수치해석기법을 개발하고, 다양한 해양사고조건과 환경영향을 고려하여 근접역에서의 2차원 확산 특성을 고찰하고 확산 현상을 예측하기 위한 모델을 개발하는 것이다. 본 연구에서는 상용코드인 ANSYS FLUENT(V. 17.2)을 사용하여 근접역에서의 2차원 확산특성을 모사하고 분석하였다. 특히, 누출된 HNS의 위치별 농도를 예측하기 위해 종수송방정식(Species Transport Equation)을 이용하였으며 RANS(Reynolds-Averaged Navier-Stokes) 방정식과 표준 $k-{\varepsilon}$ 모델을 이용하여 난류유동을 모사하였다. 해석된 결과는 문헌에서 얻어진 실험데이터와 상호비교하였으며 해수의 유속, HNS의 밀도에 따른 유층 두께, 해수면 HNS 평균 농도 그리고 HNS 전파 속도를 분석하였다. 유층 두께는 해류 유속에 따라 변화하며 변화 경향에 따라 두 구간으로 나눌 수 있다. 해류 전파 속도는 대체로 해류 유속과 선형적 비례관계를 갖는 것으로 나타났다. 해수면 평균 HNS 농도는 해류 유속에 선형적으로 비례하여 감소하며, HNS 밀도가 큰 경우 해수면 평균 HNS 체적 농도는 더 빠르게 감소하게 된다. 이러한 결과는 HNS 확산 특성을 분석하고 관련된 예측모델을 개발하는 데에 기여할 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1089-1092
/
2009
유역유출 상황 모듈은 금강수계의 강우-유출 예측 시스템에 의해 모의된 소유역 및 지점에 대한 유출량과 관측유출량 및 강우량에 대한 상호관계를 물관리를 위한 운영자의 의사결정 보조 도구로 활용하고자 한다. 유역유출 상황 모듈은 하천현황, 강우, 유출, 용수부분으로 구분하여 소유역 및 지점별 면적 강우량과 유출량에 관한 분석으로 구성되어 있다. 유역유출 상황 모듈의 기본 요소는 강우량과 유출량의 분석을 위해 사용된 지표인 강우비와 유출비로 하였다. 이들 지표는 해당월평년과 해당월에 대한 값의 비로 하였다. 강우비와 유출비의 변화에 의해 소유역 및 지점의 유출상황을 판단할 수 있으며 이에 따른 의사결정에 도움이 될것으로 판단된다. 유역유출 상황 모듈의 최종적인 목적은 현재 한국수자원공사 수자원연구원에서 생산중인 유출월보의 콘텐츠인 용수이용량, 월별유출량, 지점별 강우-유출 현황을 원활하게 생산 할 수 있도록 지원하는 것이다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.268-268
/
2023
전 지구적 급격한 기후변화로 인해 수문기상인자들의 비선형적 변동성이 발생함과 동시에 가뭄, 홍수와 같은 수재해의 발생빈도 및 강도가 증가하고 있는 추세이다. 이에 따라, 세계의 유수기관 (NASA, ESA 등)에서는 대기모형과 해양 모형의 결합 및 수치해석적 접근법을 활용하여 계절내-계절 (Subseasonal to seasonal; S2S) 예측치를 생산하여 제공하고 있다. 이에 따라, 본 연구에서는 European Centre for Medium-Range Weather Forecast (ECMWF)에서 산정되는 수문기상인자 (강수량, 증발산량 및 유출량)에 대한 정확도를 평가하고자 한다. 연구지역으로는 다양한 기후대 및 토지 피복으로 구성되어 있으며, El-Nino-Southern Oscillation (ENSO), Indian Ocean Diapole (IOD)와 같은 기후 현상이 빈번히 발생하는 호주지역을 대상으로 연구를 수행하였다. ECMWF S2S 자료에 대한 통계적 검증은 1) 지점 기반 관측치와 더불어 2) 물수지 모델 기반 수문 추정치 (The Australian Water Resources Assessment Landscape Model; AWRA-L)와 비교하였다. 연구 결과 S2S 강우 및 증발산량 산정치의 경우 비교적 짧은 예측기간(약 2주)에서 상대적으로 높은 상관관계 (R=0.5~0.6)와 낮은 편차 (강수량 = 0.10 mm/day, 증발산량 = 0.21 mm/day)를 나타내었다. 유출량의 경우, 강우 및 증발산량에 비해 상대적으로 낮은 정확도를 나타내었으며, 예측 기간이 길어짐에 따라 불확실성이 상당히 높아지는 것으로 확인되었다. 이는, S2S 계산과정에서 강우 및 증발산량 뿐만아니라 지표 유출로 도달하기 전까지의 수문기상인자들의 불확실성이 모두 모여 유출량의 불확실성이 높아진 것으로 확인할 수 있었다. 계절적 검증에서는, 강우 및 증발산량 모두 여름철에 높은 상관관계를 나타내었지만 불확실성은 상대적으로 큰 값을 나타내었다. 자세한 분석을 위해, 공간적인 불확실성을 분석해본 결과 ECMWF S2S가 매우 습윤하거나 건조한 지역에서 수문기상인자를 예측하는데 있어 한계성이 나타난 것을 확인하였다. 본 연구를 토대로, 추후 S2S 예측치에 대한 보정과 더불어 미래의 수재해 발생 위험도에 대한 정보를 획득하는데 적용될 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.183-187
/
2007
유역에서 토사유실로 인한 고농도 탁수의 발생은 현장조사와 수치모형 해석으로 평가될 수 있다. 하지만 현장조사로는 토사유실을 정량화하기에는 제한적이므로 수치모형의 적용이 요구된다. 토사유사예측을 위한 모형 적용 시, 시공간 분석을 위해서 물리적 기반 분포형 혹은 준 분포형 모형이 선호된다. 본 연구에서는 임하 안동 유역의 유출 및 토사유실 분석을 위하여 SWAT 모형 및 HSPF 모형을 적용하였다. 두 모델의 유량 검 보정은 유역 내에 수위 관측 자료(1999년${\sim}$2006년)를 이용하였으며 유사농도는 2006년 하절기 현장 조사를 통해 보정되었다. SWAT 모형의 일별 유출량 변화에 대한 Nash-Sutcliffe 효율계수는 $0.43{\sim}0.76$의 범위로 전반적으로 측정 유량을 잘 모의 하는 것으로 나타났다. HSPF 모형은 SWAT 모형과 마찬가지로 높은 효율의 일별 유출량 예측성을 보였다. 그러나 두 모델은 첨두 유량을 과소산정 하였다. 두 모형의 그래픽 분석결과 측정 유사 농도를 잘 모의하였고, 특히 HSPF 모형은 강우사상에 따른 시간별 실측값의 경향을 잘 예측하였다. 두 모형의 예측성 비교 시, 유출량은 SWAT 모형이 HSPF 모형이 비해 더 잘 모의하였으며 유사 농도는 HSPF 모형이 더 높은 정확성을 보였다. 본 연구의 결과는 향후 각 소유역별로 탁수를 유발하는 토사 유실량 평가, 유역의 토사유실 저감대책 효과분석 및 저수지 모형과의 연계를 통한 유입된 탁수의 효율적인 관리대책 수립에 이용될 것으로 사료된다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1310-1314
/
2008
수도권 지역의 신도시 개발에 따른 유역의 도시화와 인구 증가는 유역의 피복상태를 변화시키고, 생태계에 영향을 미치는 수문학적 과정과 하천수질의 변화를 초래하게 된다. 지표면의 침투, 침루 및 토양함수량을 변화시키고, 차단저류량과 요지저류량(depression storage) 등을 변화시킴으로서 유출량과 수질을 변화시키게 되는 것이다. 이와 같은 수문학적과정을 평가하기 위해서는 수문모형을 사용하는데 본 연구에서는 미국 농림부에서 개발한 SWAT모형을 이용하였다. SWAT-K모형은 SWAT(Soil and Water Assessment Tool) 모형에 인위적, 자연적인 물순환 구조변화와 지표수-지하수 연계 해석 등을 개선하여, 강우 증발산 토양수분 지표수 지하수 등의 시, 공간적 분포를 정량적으로 산정하는 장기유출 해석 모형이다. 또한, 본 모형의 적용을 위하여 GIS를 이용한 공간정보를 처리하여 수문모형의 매개변수를 결정하는 방법이 널리 사용되고 있는데, 본 연구에서는 ArcView GIS를 이용하여 입력자료를 구축하였다. 대상유역은 판교유역으로서 신도시 개발이 한창 진행되고 있는 지역으로서, 개발 과정에 따라 수문특성, 유출특성, 수질변화 특성 등이 계속하여 변화되고 있으며, 개발이 완전히 종료된 이후의 특성을 예측할 필요가 있는 유역이다. 본 연구에서는 SWAT-K모형을 이용하여 판교 신도시 개발에 따른 장기유출량을 예측하였고 모델의 매개변수를 최적화하였으며, 그 결과 본 모델이 장기 유출량 해석 및 판교유역의 수문변화를 평가하는데 유용하게 적용될 수 있을 것으로 판단되었다.
Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1727-1731
/
2008
수자원의 효율적인 관리를 위해서는 신뢰성 있는 유량자료의 획득이 대단히 중요하다. 우리나라는 양질의 유량자료를 획득하기 위해 매년 많은 시간과 돈을 투자하고 있으나 자료의 질적인 면에서 만족할 만한 성과를 얻지 못하고 있다. 현재까지 우리나라의 유량자료는 댐의 수문자료와 수량관리 부처인 건교부에서 운영하는 수위표 지점의 수위-유량곡선에서 산출된 자료에 의존하고 있다. 그러나 수위-유량 관계식을 보정하기 위한 유량측정사업이 지속적이지 못하며, 이 관계식은 유량이 적은 저수기 및 갈수기에는 부정확하다는 한계가 있다. 또한, 국립환경과학원 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정사업을 실시하고 있지만, 목적은 낙동강수계의 오염총량관리 단위유역 말단 47개 지점에서 유량측정을 효율적으로 실시하여 수질정책의 기초자료를 제공하는데 있다. 이 자료 역시 오염총량관리를 위하여 유량측정을 실시하여 수자원의 효율적인 관리를 위한 일 유량을 알 수가 없는 한계점을 가지고 있다. 따라서 저수기 및 갈수기에 수질정책의 기초자료를 제공하기 위해서 하천을 포함한 유역의 정확한 강우-유출특성의 파악이 필요하다. 그러나 강우-유출특성 또한 유역 내 강우의 시 공간적 분포가 다르며 그 자가 비선형성이 강하고 여러 변동성을 포함하므로, 강우로부터 하천의 유출량의 정확한 해석이 불가능하다. 그러나 최근 인공지능 분야에서 신호처리, 지능제어 및 패턴인식 등의 수단으로 사용되고 있는 신경망은 학습이라는 최적화 과정을 통해 입력과 출력으로 구성되는 하나의 시스템을 비선형적으로 구축할 수 있으며 이러한 이점을 활용하여 수자원 분야에서 다양하게 적용되고 있다. 본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하는 것이다. 이를 위해서 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정 지점 상류의 댐 방류량의 일 방류량자료와 강우자료를 입력 자료로 하여 유량을 예측할 수 있는 유량예측 신경망 모형 FFBN(Flow Forecasting By Neural)을 개발하였다. 그리고 입력 자료로서 장기유출모형인 SWAT의 모의결과를 입력 자료로 추가한 FFBNS(Flow Forecasting By Neural and SWAT)을 개발하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 유출량을 실측치와의 비교를 위하여 낙본D지점과 낙본 E지점에 대하여 $2005{\sim}2006$년까지의 모의 결과를 낙동 수위측정지점과 구미 수위측정지점의 실측치 통하여 복잡한 비선형성을 가지는 유출 시계열 자료에 대한 효과적인 최적의 신경망모델을 개발하여 유량을 예측하고 적용 가능성을 검토하고자 한다. 모의 결과는 수질정책의 기초자료 제공에 기여할 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.345-345
/
2023
기후변화에 대응하기 위한 가뭄과 홍수 등의 수재해 관리체계 수립의 필요성이 높아지고 있어, 기후예측모형과 연계하여 수문 및 에너지 순환과정에서 하천유출에 대한 기후변화 영향예측이 가능한 지표수문모형(Land Surface Model, LSM)의 개발과 적용이 요구되고 있다. 또한, LSM은 연속적이고 장기적인 유출을 모의할 수 있어 수재해에 관한 예측과 정보 제공에 유용하므로, 최근 수재해 예측시스템 구축을 위한 주요한 도구로 관심을 받고 있다. 이에 따라, 본 연구에서는 기후모형 CWRF(Climate-Weather Research and Forecasting Model)와 연계되어 물-에너지 순환모의가 가능한 최신 LSM 중 하나인 Common Land Model(CoLM)을 우리나라 유역의 장기하천유출모의에 적용하고자 한다. 대부분의 LSM은 지상의 물과 에너지 순환과정이 각 단일 격자의 수직적인 모의과정으로 제한되고 있었지만, 현재 지속적인 개선을 통해 많은 LSM에서 보다 현실적인 물과 에너지 변화를 모의하고자 노력하고 있다. 그러나, 지속적인 모형의 개선에도 불구하고(또는 그로 인해) 정교한 수학적 프로세스를 통합하여 개선된 최신 LSM은 오히려 복잡한 매개변수 체계, 매개변수 추정, 입력자료, 초기 및 경계조건 등에서 비롯된 불확실성이 존재하고 있다. 따라서, 모형의 주요 매개변수값의 추정은 모의결과의 성능과 안정성을 확보하기 위한 LSM의 모의에서 필수적인 과정 중 하나이다. 유역의 특성에 따라 결정되는 모형 매개변수는 관련자료의 부재 또는 관측의 부정확성으로 인해 검보정 과정을 통해 결정되어야 하므로, 유역의 수문특성을 최대한 반영하고 모형의 성능과 안정성을 확보하기 위해 모의목적에 따라 적절한 검보정 목적함수의 선정도 요구된다. CoLM과 같이 다양한 매개변수가 사용되는 LSM에서는 모의결과에 대한 불확실성을 줄이고, 모의목적에 따른 모형의 예측도 향상을 위해서 모의결과에 민감한 주요 매개변수의 검보정이 과정이 중요하다. 따라서, 본 연구에서는 격자기반 지표수문모형인 CoLM을 이용하여 우리나라 유역의 장기하천유출을 모의하는 과정에서 CoLM의 주요 매개변수 검보정에 필요한 적절한 목적함수의 적용을 통해 CoLM 장기하천유출 모의결과의 예측성능을 개선하고자 한다.
TOPMODEL은 지표유출과 중간류유출을 비교적 적은 수의 매개변수와 물리적 근거를 기반으로 모의하는 수문모형이다. 현재까지 TOPMODEL은 온대습윤지역의 소유역 유출모의에 적용성이 우수하다는 연구결과가 많이 발표되었으며, 우리나라에서도 이 모델을 이용한 유역유출 모의에 탁월하다는 연구 결과들이 나오고 있다. 이런 연구들은 대부분 모델의 중요 매개변수를 유역유출 관측자료로부터 유도하고, 이 매개변수를 이용하여 유역유출을 모의한 연구들로 TOPMODEL에서 제시한 것 같은 유역내의 지하수위변화, 지표유출, 중간류유출 등의 수문학적 반응 발생여부를 조사하지 못하였다.(중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.