• Title/Summary/Keyword: 유출계수

Search Result 779, Processing Time 0.028 seconds

Permeable Coastal Pavement Structure for Shore Protection and Removal of Non-point Source Pollutants (연안재해 방지 및 비점오염원 유출저감을 위한 투수블록의 특성 연구)

  • Choi, Yun-Shik;Kim, Jong-Yeong;Han, Sangsoo;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.597-606
    • /
    • 2019
  • Due to climate change, coastal areas are being flooded with torrential rain, typhoons, and tsunamis. In addition, non-point source pollutants (NPSs) that accumulated on the ground, streets, and buildings during the dry season are washed off by rain and stormwater runoff, which adds to the damage associated with environmental pollution, e.g., pollution that makes its way into the ocean. Recently, low impact development (LID) has been considered as a means of controlling water circulation and NPSs. In the coastal area, permeable blocks have been constructed mainly to reduce the flood damage caused by waves. Some important design factors that must be considered to ensure long-term performance are the permeability coefficient, clogging, and the efficiency of the removal of total suspended solids (TSS), but currently there are no standardized design criteria or testing techniques that are used worldwide. Herein, we analyzed the permeability coefficient and the TSS removal efficiency tendency according to the permeability area ratio with an easily-detachable, permeable block filled with calcinated yellow soils as the filter media. Our lab-scale tests indicated that, when the permeability area ratio was 25%, the reduction of the permeability coefficient after clogged was 11%, which was a significant decrease compared to other cases. Permeability persistence increased when the permeability area ratio increased from 50% to 75%. The TSS removal efficiency decreased as the permeability area ratio increased. Our pilot-scale test indicated that the TSS removal efficiency was more than 80% higher in all cases. We also found that the permeability persistence was excellent as the permeability area ratio increased, and, in actual construction, it is effective to set 5.3% of the total area as permeable area in terms of permeability and economic feasibility.

Study on the performance improvement of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 성능향상에 관한 연구)

  • Bae, Young-Woo;Kim, Do-Hyung;Hong, Moon-Geun;Lee, Soo-Yong;Jang, Ki-Won
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the steady operational state. Although it has been showed that a EM(Engineering Model) with a high discharge coefficient value compared with the TM(Technology Model) fills the overall performance requirements, additional design modifications in some critical parts of the EM were conducted to improve the performance. The configurations of the pressure-control body, the middle flange, and the rips of the inlet body of the EM were modified and the performance tests have been performed with test models. Consequently, the intended improvements have been verified by the performance tests.

A study on the Evaluation for the Design Flood of Ungauged Small River Basins (미계측 중소하천의 계획홍수량산정에 관한 연구)

  • 침순보;안보훈
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.101-114
    • /
    • 1976
  • This paper presents a hydrologic method of probabilistic design flood calculation for ungauged small river basins. It is based on the study and analysis of the physiographic characteristics of the river basin for which stream flow records may not be available. Rainfall data is used at nearby station which has the rainfall intensity-duration-frequency relations. Musim cheon, second tributary of the Guem river, is selected for the sample study. Design floods for the stream reaches are computed by the Rational formula, the runoff coefficients being determined with the physiographic data such as soil type, land use and vepetal covers. Derived unit hydrograph at conneted main river basin is used to compute the peak flood discharge. Kajiyama formula and modified Kajiyama formula are used to calculated the most probable maximum flood discharge. The result of this study shows that synthesized unit hydrograph method is more accurate and applicable way to com pute design flood for ungauged small river basins.

  • PDF

Applicability of the DAWAST Model Considered Return flows (용수 수요를 고려한 DAWAST 모형의 적용성 평가)

  • Noh, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1097-1107
    • /
    • 2003
  • The DAWAST model was originally developed to consider the variation of water storage in the unsaturated soil zone and it is a conceptual lumped model. Return flows from agricultural, domestic and industrial water were included to the original result of model simulation to calibrate model parameters of watershed runoff. Agricultural water demand was estimated only in paddy fields supposing that return flow responded at stream was originated from paddy fields. Domestic and industrial water demand was estimated by average daily water demand multiplied monthly variation coefficient. Daily inflow to the Daechung multipurpose dam was applied to verify the DAWAST model considered return flows. On annual average from 1983 to 2001, inflows were simulated to 652.5 mm with return flows considered, which was approached more closer to observed inflow of 667.3 mm, compared with case of 606.8 mm with return flows not considered.

Estimation of Small Hydropower Resources and Development of Geographic Information System (소수력 자원량 산정과 지리정보시스템 구축)

  • Heo, June-Ho;Park, Wan-Soon;Yun, Jung-Hwan;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 840 standard basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc., all of which were not provided by the domestic hydropower Resources Map System. Established GIS small hydropower energy system can be used to basic information for active uses of small hydropower energy which is scattered to the entire country.

A Study on the Geomorphologic Synthesis of Hydrologic Response (수문응답의 지형학적 합성방법에 관한 연구)

  • Cho, Hong Je;Lee, Sang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.99-108
    • /
    • 1990
  • A Synthetic Unit Hydrograph Method was investigated for representation of the effective rainfall-direct runoff hydrograph by using a Geomorphologic Instantaneous Unit Hydrograpb(GIUH) proposed by Gupta et al(1980). The response function of the basin was assumed to be the two-parameter gamma probability density function. The physical parameters of the response function(Nash Model) was determined by using the regression eqs. were parameterized in terms of Horton order ratios and the relations between the basin lag time and time-scale parameter. The capability of the Synthetic Unit Hydrograph to the real basin was tested for the Pyungchang river basin and Wi Stream basin, and its capability to reproduce the hydrologic response was investigate and compared with the Moment Method and the Least Square Method used incomplete gamma function. The representation of the peak flow, the time to peak and the hydrographs the derived Synthetic Unit Hydrograph were tested on some obseved flood data and showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

Removal of Toxicity from Kraft Pulp Mill Effluents by Activated Sludge Process (활성슬러지 공정에 의한 Kraft 펄프 폐수의 독성 제거)

  • Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.9-18
    • /
    • 1994
  • Activated sludge pilot plant testing was conducted to determine the ability of a well-designed activated sludge treatment system to remove chromic toxicity from the bleached kraft pulp mill effluent. Removals of conventional(BOD and SS) and nonconventional(resin and fatty acids, color, AOX) pollutants were estimated. The pilot plant was operated at steady state for about 10 weeks at an F/M of 0.28 and a sludge age of 8.4 days. The average MLSS concentration was 4,309mg/l, of which volatile fraction was 57%. During the operation period, the BOD removal reaction rate(k) was determined to be 8.2/day at $30^{\circ}C$. The BOD removal was 84 percent, which was 3 to 6 percent lower than expected for full-scale treatment. The chronic toxicity of the activated sludge effluent was tested by employing both Dinnel and the BML protocols. It was found that the pilot plant could achieve in excess of 90 percent reduction in chronic echinoderm toxicity. The data show slight reduction of color and AOX across the activated sludge system. The pilot system, however, demonstrated on excellent removal of resin and fatty acids.

  • PDF

Experimental Analysis of the Morphological Changes of the Vegetated Channels (실내실험에 의한 식생하도의 지형변동 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.909-919
    • /
    • 2013
  • This study examines the hydraulic characteristics, the channel changes, the behavior of bars, and bank stability by means of laboratory experiments. Three sets of laboratory experiments are conducted to elucidate the influence of riparian vegetation of the channels with erodible banks. Flow velocity is decreased in the vegetated zone, the mobility of lower channels is decreased. The double Fourier analysis of the bed waves shows that 1-1 mode (alternate bar) is dominant at the initial stage of the channel development. As time increases, 2-2 and 2-3 modes (central or multiple bars) are dominant due to the increased width to depth ratio. As the vegetation density is increased, the number of bars are increased, bank stability increases. The variation of sediment discharges is affected by vegetation density. The braided intensity is decreased with vegetation density. As the vegetation density is increased, the correlation coefficient of bed topography and bed relief index is increased.

Hydrologic Analysis for Determining the Lag Times of GIUH (GIUH의 지체시간 산정을 위한 수문학적 해석)

  • Lee, Hyeok-Gyu;Yun, Seok-Yeong;Kim, Jae-Han
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.155-169
    • /
    • 1995
  • Three types of methods are used to determine the lag time which is an important parameter in estimating the geomorphological instantaneous unit hydrograph (GIUH) and their results are anlyzed hydrologically in this study. The first method uses only the average velocity and second one uses the combination of the stream length and the average velocity. The third method employs the relationship between watershed area and lag time obtained from the empirical coefficients of Boyd and Singh. To verify the applicabilities of such methods to the actual river basin, the obtained lag times were tested by using the observed data. The results showed that the first method was applicable to small watershed area but not to larger area. The several other hydrologic characteristics beside the watershed area should be considered for the third method because the accuracy of the lag time was not good. Finally, the second method gave the most similar simulation results and the best agreements to the observed runoff data than any other method.

  • PDF

A Feasibility Study of TOPMODEL for a Flood Forecasting Model on a Single Watershed (TOPMODEL의 단일유역 홍수예보능에 관한 연구)

  • Bae, Deok-Hyo;Kim, Jin-Hun;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The objective of this study is to test the flood forecasting capability of TOPMODEL on a single watershed in Korea. The selected study area is the Soyang River basin with outlet at Soyang Dam site. The three daily hydrographs and the three hourly flood events during 1990~1996 are selected for model calibrations and performance tests. The model parameters are estimated on 1990 daily event by manual fitting technique and the effects of topographic index distribution to river flow simulations are investigated on the study area. The model performance on correlation coefficient between the observed and the simulated flows for the verification periods are above 0.77 on the 95-, 96-daily events, while above 0.87 for 90-, 95-, 96-hourly events. By the consideration of flood flow characteristics in Korea, the physical interpretation of the model concept, and the model performance, it can be concluded that the TOPMODEL is feasible as a flood forecasting model in Korea. Korea.

  • PDF