• Title/Summary/Keyword: 유체 표면

Search Result 810, Processing Time 0.02 seconds

Optimization of Supercritical Fluid Extraction of Tocotrienol from Grape Seed (초임계유체 추출을 이용한 포도씨 tocotrienol 추출조건 최적화)

  • Kim, Kyeong-Mi;Woo, Koan Sik;Hwang, In-Guk;Lee, Youn-Ri;Lee, Jun-Soo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.37-41
    • /
    • 2009
  • In this study, supercritical carbon dioxide extraction (SFE) was utilized for the extraction of tocotrienol from grape seeds. The optimal conditions for vitamin E and tocotrienol extraction were determined via response surface methodology (RSM). Central composite design was utilized to assess the effects of oven temperature (30-$50^{\circ}C$, X1), operating pressure (17-25 MPa, X2), and extraction time (1-5 hr, X3) of supercritical fluid extraction. Vitamin E and tocotrienol contents were 8.65 mg/100 g and 7.88 mg/100 g at $40^{\circ}C$, 20MPa and 5 hr, respectively. The predicted extraction condition was validated via actual experimentation. The predicted extraction conditions were $40^{\circ}C$, 3.8 hr, and 20.7MPa. The vitamin E and tocotrienol contents under these conditions were 8.20 mg/100 g and 7.42 mg/100 g, respectively. The vitamin E and tocotrienol contents of solvent extraction with hexane were 8.18 mg/100 g and 7.24 mg/100 g, respectively.

Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow (Pseudo-compressibility 방법에서 이상유동 해석을 위한 Level Set방법의 적용)

  • Ihm Seung-Won;Kim Chongam;Shim Jae-Seol;Lee Dong-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.158-165
    • /
    • 2005
  • In order to analyze incompressible two-phase flow, Level Set method was applied on pseudo-compressibility formulation. Level Set function is defined as a signed distance function from the phase interface, and gives the information of the each phase location and the geometric data to the flow. In this study, Level Set function transport equation was coupled with flow conservation equations, and owing to pseudo-compressibility technique we could solve the resultant vector equation iteratively. Two-phase flow analysis code was developed on general curvilinear coordinate, and numerical tests of bubble dynamics and surging wave problems demonstrate its capability successfully.

2D Fluid Modeling of Ar Plasma in a 450 mm CCP Reactor

  • Yang, Won-Gyun;Kim, Dae-Ung;Yu, Sin-Jae;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.267-267
    • /
    • 2012
  • 최근 국내 반도체 장비 업체들에 의해서 차세대 반도체용 450 mm 웨이퍼 공정용 장비 개발이 진행 중에 있다. 반도체 산업은 계속해서 반도체 칩의 크기를 작게 하고, 웨이퍼 크기를 늘리면서 웨이퍼 당 칩수를 증가시켜 생산성을 향상해오고 있다. 현재 300 mm 웨이퍼에서 450 mm 웨이퍼를 도입하게 되면, 생산성 뿐만 아니라 30%의 비용절감과 50%의 cycle-time 단축이 기대되고 있다. 장비에 대한 이해와 공정에 대한 해석 능력을 위해 비용과 시간이 많이 들기 때문에 최근 컴퓨터를 활용한 수치 모델링이 진행되고 있다. 또한, 수치 모델링은 실험 결과와의 비교가 필수적이다. 본 연구에서는 450 mm 웨이퍼 공정용 장비의 전자밀도를 cut off probe를 통해 100 mTorr에 서 Ar 플라즈마를 파워에 따라 측정했다. 13.56 MHz 200 W, 500 W, 1,000 W로 입력 파워가 증가하면서 웨이퍼 중심에서 $6.0{\times}10^9#/cm^3$, $1.35{\times}10^{10}#/cm^3$, $2.4{\times}10^{10}#/cm^3$로 증가했다. 450 mm 웨이퍼 영역에서 전자 밀도의 불균일도는 각각 10.31%, 3.24%, 4.81% 였다. 또한, 이 450 mm 웨이퍼용 CCP 장비를 축대칭 2차원으로 형상화하고, 전극에 13.56 MHz를 직렬로 연결된 blocking capacitor ($1{\times}10^{-6}$ F/$m^2$)를 통해 인가할 수 있도록 상용 유체 모델 소프트웨어(CFD-ACE+, EXI corp)를 이용하여 계산하였다. 주요 전자-중성 충돌 반응으로 momentum transfer, ionization, excitation, two-step ionization을 고려했고, $Ar^+$$Ar^*$의 표면 재결합 반응은 sticking coefficient를 1로 가정했다. CFD-ACE+의 CCP 모델을 통해 Poisson 방정식을 풀어서 sheath와 wave effect를 고려하였다. Stochastic heating을 고려하지 않았을 때, 플라즈마 흡수 파워가 80 W, 160 W, 240 W에서 실험 투입 전력 200 W, 500 W, 1,000 W일 때와 유사한 반경 방향의 플라즈마 밀도 분포를 보였다. 200 W, 500 W, 1,000 W일 때의 전자밀도 분포는 수치 모델링과 전 범위에서 각각 10%, 3%, 2%의 오차를 보였다. 450 mm의 전극에 13.56 MHz의 전력을 인가할 때, 파워가 증가할수록 전자밀도의 최대값의 위치가 웨이퍼 edge에서 중심으로 이동하고 있음을 실험과 모델링을 통해 확인할 수 있었다.

  • PDF

A Quasi-Steady Method for Unsteady Flows over Surfaces with Structural Deformation (구조 변형이 있는 평면 위의 비정상 유동해석을 위한 준-정상 기법)

  • Kim, Minsoo;Lee, Namhun;Lee, Hak-Tae;Lee, Seungsoo;Kim, Heon-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this paper, we present and verify an aerodynamic reduced-order model (ROM) based on a quasi-steady flow method to reduce the computational cost of supersonic aeroelastic analysis. For supersonic flows, especially when the characteristic time scale of the flow is small compared to that of the structural motion, the unsteadiness of flow can be negligible, and quasi-steady solutions can be used instead of the unsteady solutions for the aeroelastic analysis. Kriging method is used to build the ROM of the aerodynamics. The surface solutions from the ROM are used as the boundary conditions for the structural analysis at each time-step. The ROM is validated against the unsteady solutions.

Influence of LNAPL and Soil Water on Migration of Gaseous Ozone in Unsaturated Soils (불포화 토양내에서 가스상 오존 이동특성에 대한 LNAPL과 토양수분의 영향)

  • Jung, Hae-Ryong;Choi, Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.63-67
    • /
    • 2005
  • Laboratory scale experiments were carried out to delineate the effects of liquid phases, such as soil water and light nonaqeous phase liquid (LNAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevents direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity and decreased air-water interface area. Diesel fuel as LNAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. Ozone breakthrough time was retarded with increased diesel concentration, however, because of high reactivity of diesel fuel with ozone. In unsaturated soil containing two liquids of soil water and LNAPL, the transport of ozone was mainly influenced by nonwetting fluid, diesel fuel in this study.

Nonlinear Flow Characteristics of Two-Dimensional Hydrofoils moving below the Free surface (자유수면하에서 이동하는 2차원 수중익 주위의 비선형 유동특성)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.8-19
    • /
    • 1998
  • Nonlinear flow characteristics of a hydrofoil running under the free surface are investigated based on potential flow theory using singularity distribution techniques. Following Hess & Smith's method[12], sources and vortices are distributed on the surface of the foil and Rankine sources are distributed at a distance above the undisturbed free surface to solve the nonlinear free surface waves(so called Raised Panel Method). Using the linearized Neumann-Kelvin solution, the conversed solutions which rigidly satisfy the nonlinear free surface condition is obtained through an iterative technique. It is validated that the nonlinear solutions are compared with Duncan's experimental results(NACA 0012, $\alpha=5^{\circ}$), showing good correlations with each other. At a very shallow submergence and a very high speed the converged solutions are obtained. As the speed increases higher, it is shown that the difference between the nonlinear and linear solutions are trivial. Finally, the effects of the camber and thickness on the nonlinear flow characteristics of the foil are investigated.

  • PDF

Analysis of Three-Dimensional Profile of Bacterial Colony and Visualization of Fluidic Biofilm Using Fluorescent Microbeads (형광 미세입자를 이용한 박테리아 군집의 3차원 형상 분석 및 유동성 생물막의 가시화)

  • Kim, Kyung-Hoon;Park, Eun-Jung;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1119-1126
    • /
    • 2012
  • The collective behavior of bacteria plays an important role in biofilm development. In this study, the fluidic properties of biofilms formed in Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) colonies were compared by visualizing 200-nm fluorescent beads that were initially embedded in an agar plate and distributed spontaneously on the upper surface of the growing colonies. We conducted experiments to measure the three-dimensional profile of the E. coli colony using fluorescent microbeads that did not flow in the colony. Vortical flow patterns near the edge of the B. subtilis colony were observed clearly by tracking the movement of the beads in the biofilm of the colony. The present study should be the first step toward determining the effect of fluidic biofilms on the growth and swarming dynamics of bacteria.

Geochemical Study on the Mobility of Dissolved Elements by Rocks-$CO_2$-rich waters Interaction in the Kangwon Province (강원도 지역 탄산수와 암석간의 반응에 의한 용존 원소들의 유동성에 관한 지구화학적 연구)

  • 최현수;고용권;윤성택;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • In order to investigate the relative mobility (RM) of dissolved elements during processes controlling major and trace element content, the concentrations of major, minor and trace elements were reviewed from the previous data of $CO_2$-rich waters and granites from Kangwon Province. The relative mobility of elements dissolved in $CO_2$-rich waters is calculated from $CO_2$-rich water/granite ratio with normalizing by sodium. The results show that gaseous input of magmatic volatile metals into the aquifer is negligible in this study area, being limited by cooling of the rising fluids. Granite leaching by weakly acidic, $CO_2$-charged water is the overwhelming source of metals. Poorly mobile element (Al) is preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-hydroxo anion forming elements (especially As and U) are mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Fe and Mn) or solid surface-related processes (adsorption or precipitation) (V, Zn and Cu).

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade (풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화)

  • Park, Ji-Ho;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

Using Support Vector Regression for Optimization of Black-box Objective Functions (서포트 벡터 회귀를 이용한 블랙-박스 함수의 최적화)

  • Kwak, Min-Jung;Yoon, Min
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.125-136
    • /
    • 2008
  • In many practical engineering design problems, the form of objective functions is not given explicitly in terms of design variables. Given the value of design variables, under this circumstance, the value of objective functions is obtained by real/computational experiments such as structural analysis, fluid mechanic analysis, thermodynamic analysis, and so on. These experiments are, in general, considerably expensive. In order to make the number of these experiments as few as possible, optimization is performed in parallel with predicting the form of objective functions. Response Surface Methods (RSM) are well known along this approach. This paper suggests to apply Support Vector Machines (SVM) for predicting the objective functions. One of most important tasks in this approach is to allocate sample data moderately in order to make the number of experiments as small as possible. It will be shown that the information of support vector can be used effectively to this aim. The effectiveness of our suggested method will be shown through numerical example which is well known in design of engineering.