• 제목/요약/키워드: 유체유동 외팔 파이프

검색결과 24건 처리시간 0.034초

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 - (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics -)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로- (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change-)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향 (Effects of Crack on Stability of Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

유체유동 회전 외팔 파이프의 안정성에 미치는 끝단질량의 영향 (Influence of Tip Mass on Stability of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.976-982
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and tip mass. The equation of motion is derived by using the Lagrange's equation. The system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of a rotating angular velocity, mass ratio, the velocity of fluid flow and tip mass on the stability of a cantilever pipe by the numerical method are studied. The critical flow velocity for flutter is proportional to the angular velocity and tip mass of the cantilever pipe. Also, the critical flow velocity and stability maps of the pipe system are obtained by changing the mass ratios.

크랙을 가진 탄성지지된 유체유동 외팔파이프의 동적 안정성 (Dynamic Stability of Elastically Restrained Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.177-184
    • /
    • 2008
  • The dynamic stability of elastically restrained cantilever pipe conveying fluid with crack is investigated in this paper. The pipe, which is fixed at one end, is assumed to rest on an intermediate spring support. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of a crack severity and position, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. Also, the critical flow velocity for the flutter and divergence due to variation in the support location and the stiffness of the spring support is presented. The stability maps of the pipe system are obtained as a function of mass ratios and effect of crack.

이동질량을 가진 유체유동 회전 외팔 파이프의 동특성 (Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1169
    • /
    • 2007
  • In this paper, the dynamic stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influence of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating cantilever pipe are derived by using extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the rotating angular velocity of a pipe. Also, the critical flow velocity and stability maps of the rotating pipe system for the variation each parameter are obtained.

끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석 (Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass)

  • 윤한익;손인수
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.