• 제목/요약/키워드: 유체유동 외팔 관

검색결과 5건 처리시간 0.025초

유체유동을 갖는 외팔 송수관의 동적 안정성과 진동제어에 관한 연구 (A Study on the Dynamic Stability and Vibration Control of Cantilevered Pipes Conveying Fluid)

  • 류봉조;정승호;강용철
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.171-179
    • /
    • 1998
  • The present paper deals with the dynamic stability and vibration suppression of a cantilevered flexible pipe having a tip mass under an internal flowing fluid. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some analytical results using Galerkin's method are presented. Finally, the vibration suppression technique by means of an internal fluid flow is demonstrated experimentally.

  • PDF

이동질량을 가진 유체유동 외팔 파이프극 동특성 (Dynamic Characteristics of Cantilever Pipe Conveying Fluid with the Moving Masses)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제12권7호
    • /
    • pp.550-556
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid. the moving mass upon it and an attacked tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe haute been studied on the dynamic behavior of a cantilever pipe by numerical method. As the velocity of the moving mass increases, the deflection of cantilever pipe conveying fluid is decreased. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. The deflection of the cantilever pipe conveying fluid is increased by moving masses. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced due to the deflection of pipe tilth the effect of moving mass and gravity.

유체유동을 갖는 외팔 파이프의 동특성 및 진동수에 미치는 설계인자의 영향 (Influence of Design Parameters on Dynamic Behavior and Frequencies of Cantilever ripe Conveying Fluid)

  • 윤한익;손인수;박일주
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1815-1823
    • /
    • 2003
  • The vibrational system of this study consists of a cantilever pipe conveying fluid, the moving masses upon it and having an attached tip mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior and the natural frequency of a cantilever pipe by numerical method. The deflection of the cantilever pipe conveying fluid is increased due to the tip mass and rotary Inertia. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced by energy variation when the moving mass fall from the cantilever pipe. As the moving mass increase, the frequency of the cantilever pipe conveying fluid is increased. The rotary inertia of the tip mass influences much on the higher frequencies and vibration mode.

이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향 (The Influence of Moving Masses on Dynamic Behavior of a Cantilever Pipe Subuected to Uniformly Distributed Follower Forces)

  • 손인수;윤한익;김현수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.80-85
    • /
    • 2002
  • A conveying fluid cantilever pipe system subjected to an uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses. and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical mettled. The uniformly distributed tangential follower force is considered within its ciritical value of a cantilever pipe without moving masses, and three constant velocities and three constant distance between two moving masses are also chosen. When the moving masses exist on pipe, As the velocity of the moving mass and distributed tangental force increases, the deflection of cantilever pipe conveying fluid is decreased, respectively. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip displacement of pipe is influenced by the potential energy of cantilever pipe.

  • PDF

유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향 (The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수;진종태;김현수
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.