• Title/Summary/Keyword: 유전체 분석

Search Result 1,196, Processing Time 0.024 seconds

Genome sequence of Prevotella intermedia strain originally isolated from cervicofacial actinomycosis (경부안면형 방선균증에서 분리된 Prevotella intermedia의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Jang, Eun-Young;Yang, Seok Bin;Shin, Seung-Yun;Ryu, Jae-In;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.58-60
    • /
    • 2019
  • Anaerobic Gram-negative bacterium Prevotella intermedia is a part of normal flora of the oral cavity and associated with various types of oral and systemic diseases. We present here a draft genome sequence of P. intermedia ATCC 15032, originally isolated from cervicofacial actinomycosis. The genome is 2,848,426 bp in length and has a GC content of 43.45%. The genome includes 2,358 protein-coding genes, 5 rRNAs, and 43 tRNA. The sequence information will provide important clues in understanding the genome diversity within the bacterial species, and genetic basis for phenotypic differences among P. intermedia strains.

Analysis of Resonance Scattering Characteristics by Multi-layered Dielectric Gratings (다층 유전체 격자구조에 의한 공진 산란특성의 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.231-236
    • /
    • 2017
  • The space harmonics generated by a plane-wave incident upon a multi-layered dielectric grating can undergo strong resonance scattering variations known as GMR(guided-mode resonance). To clarify these effects, we examine the field propagation and dispersion curve inside the grating region by using a rigorous equivalent transmission-line theory(RETT). The results show that, at the peak of a scattering resonance, the reflected mode is almost identical to a leaky wave that can be supported by the grating structure. Thus, we confirm and generalize previous research that has occurred GMR effect associated with the free-resonant character of leaky waves at multi-layered dielectric gratings. Quantitative simulation results illustrating the behavior of typical gratings are given, and the special case of normal incidence is discussed for TM mode.

Complete genome sequence of Pantoea intestinalis SRCM103226, a microbial C40 carotenoid zeaxanthin producer (식용곤충 갈색거저리에서 분리한 카로테노이드 생성균주인 Pantoea intestinalis SRCM103226 균주의 유전체 해독)

  • Kim, Jin Won;Ha, Gwangsu;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.167-170
    • /
    • 2019
  • Pantoea intestinalis SRCM103226, isolated from edible insect mealworm overproduces zeaxanthin as a main carotenoid. The complete genome of P. intestinalis SRCM103226 was sequenced using the Pacific Biosciences (PacBio) RS II platform. The genome of P. intestinalis SRCM103226 comprises a 4,784,919 bp circular chromosome (53.41% G+C content), and is devoid of any extrachromosomal plasmids. Annotation using the RAST server reveals 4,332 coding sequences and 107 RNAs (22 rRNA genes, 85 tRNA genes). Genome annotation analysis revealed that it has five genes involved in the carotenoid pathway. The genome information provides fundamental knowledge for comparative genomics studies of the zeaxanthin pathway.

Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression (베이지안 회귀를 이용한 국내 홀스타인 젖소의 유량형질 관련 DGAT1유전자 효과 검증)

  • Cho, Kwang-Hyun;Cho, Chung-Il;Park, Kyong-Do;Lee, Joon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1249-1258
    • /
    • 2015
  • DGAT1(diacylglycerol O-acyltransferase1) gene is well known as a major gene of milk production in dairy cattle. This study was conducted to investigate how the DGAT1 gene effect on milk yield was appeared from the genome wide association (GWA) using high density whole genome SNP chip. The data set used in this study consisted of 353 Korean Holstein sires with 50k SNP genotypes and deregressed estimated breeding values of milk yield. After quality control 41,051 SNPs were selected and locations on chromosome were mapped using UMD 3.1. Bayesian regression of BayesB method (pi=0.99) was used to estimate the SNP effects and genomic breeding values. Percentages of variance explained by 1 Mb non-overlapping windows were calculated to detect the QTL region. As the result of this study, top 1 and 3 of 2,516 windows were seen around DGAT1 gene region and 0.51% and 0.48% of genetic variance were explained by these two windows. Although SNPs on the DGAT1 gene region are excluded in commercial 50k SNP chip, the effect of DGAT1 gene seem to be reflected on GWA by the SNPs which are in linkage disequilibrium with DGAT1 gene.

Current status and prospects of chrysanthemum genomics (국화 유전체 연구의 동향)

  • Won, So Youn;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.272-280
    • /
    • 2016
  • Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.