• Title/Summary/Keyword: 유전자보호림

Search Result 4, Processing Time 0.028 seconds

A Study on the Management Method in Accordance with the Vegetation Structure of Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin (울진 소광리 금강소나무림 식생구조 특성에 따른 관리방안)

  • Kim, Dong-Wook;Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • The Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin has traditionally been a pine tree protection area (prohibited forest) for timber production purposes, and is now designated and managed as a protected area for forest genetic resource conservation by the Korea Forest Service. This study, we analyzed topographical characteristics, existing vegetation, tree age, and plant community structure, and proposed a sustainable management method for the Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin for timber havesting purposes. The topographical characteristics of the target area were 36.7% ridges and 38.7% valleys; the ratio of ridges to valleys was similar, and the slopes formed 24.7% of the total area. The types of pine forest communities are divided into six types based on the progress of pine forest renewal, the competition with other species such as deciduous broadleaf trees, and the formation of layered structures. It has been confirmed that the age of the large-diameter pine trees (40~60cm in diameter) is approximately 60~70 years, which is relatively low. As a result of the analysis of the relative importance percentage and layered structure, differences depended on the progress of the pine forest renewal project, and not only the maintenance of the pine forest, but also the creation of a secondary growth forest, the density adjustment of pine trees, and the active management of competitive trees. The average basal area by the community was 12,642.1~25,424.4cm2 for the tree layer and 1.8~1,956.5cm2 for the low tree layer based on a quadrat of 400m2. The difference in the basal area appeared to depend on the size and number of trees forming the tree layer and the degree of pine forest renewal (the degree of time elapsed after thinning pine trees). The average number of species that appeared in each community was 8.7-20.3; there were many species located in valleys, and the type competes with deciduous broadleaf trees due to the lack of management. The diversity of species ranged from 0.6915-1.0942, and was evaluated as low compared to pine communities in central temperate zones. In this paper, we determined the management goals of Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin to produce timber with high economic value, and suggested efficient vegetation management for continuous afforestation, the establishment of a timber production system, and improvement of wood production as a management direction.

Distributional Patterns of Understory Vegetation at Mt. Geumdae's Protected Area for Forest Genetic Resources (금대봉 산림유전자원보호림의 하층식생 분포양상)

  • Chun, Seung-Hoon;Lee, Hyung-Sook;Lim, Jong-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.339-350
    • /
    • 2009
  • This study was carried out to investigate distributional condition of rare plants and useful plant resources, and to verify distributional patterns of understory vegetation associated with the upper layer's vegetation structure. Total 59 families, 160 genera, 218 kinds of vascular plants were identified at the study site including 6 rare plants designated by Korea Forest Service (Lloydia triflora Bak., Trillium kamtschaticum Pall., Lilium distichum Nakai, Anemone koraiensis Nakai, Iris odaesanensis Y.N. Lee, Viola diamantica Nakai). Twenty three species of useful plant resources were also identified at the site; 8 of them showed clustered distributions and the others were prone to scatter. Actual vegetation of this study area consisted of one natural community dominated by Quercus mongolica Fisch. and three disturbed communities of Larix kaempferi (Lamb.) Carriere, Abies holophylla Max. and/or a herbaceous vegetation resulting from forest removal and strong wind of mountain top. This classification was strongly supported by cluster analysis based on the surveyed plot data. Distributional patterns of understory vegetation within forest stand were somewhat related to overstory vegetation structure, but showed a different tendency according to site condition, species composition, and competitive pressure among understory vegetation. Therefore, in order to protect the important understory components as forest genetic resources, forest treatments such as density control of overstory should be implanted based on understanding of impact on understory's dynamics and growing condition.

Strategy for Bio-Diversity and Genetic Conservation of Forest Resources in Korea (생물종(生物種) 다양성(多樣性) 및 삼림유전자원(森林遺傳資源) 보존(保存) 전략(戰略))

  • Park, Young Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.191-204
    • /
    • 1994
  • Due to its topographic complexities and various climatical condition, Korea exhibits diverse forest types. Dominant tree species in this zone are Quercus spp., Betula spp., Zelkova spp., Fraxinus spp., Pinus densiflora, Pinus koraiensis, and Pinus thunbergii ete. Genetic conservation in forest species in Korea there are three ways ; one is in situ, other is ex situ and third is in-facility conservation. In situ conservation include that are the present status of conservation of rare and endangered flora and ecosystem, the reserved forest, the national and provincial park, and the gene pool of natural forests. Ex situ conservation means to be established the new forest from in situ forest stands, progeny and provenance test populations, seed orchard and clone banks, and gene conservation in-facility. As a tool for low temperature storage, several aspects on in vitro system were studied ; (1) establishment of in vitro cultures from juvenile and/or rejuvenated tissues, (2) induction of multiple shoots from the individual micropropagules, (3) elongation of the proliferated shoots. Studies on cold storage for short-and long-term maintenance of in vitro cultures under $4^{\circ}C$ in the refrigerator were conducted. For the cryopreservation at $-196^{\circ}C$, various factors affecting survivability of the plant materials are being examined. The necessity of gene conservation of forest trees is enlarged not only to increase the adaptability for various environments but also to gain the breeding materials in the future. For effective gene conservation of forest trees, I would like to suggest followings ; 1. Forest stands reserved for other than the gene conservation purposes such as national parks should be investigated by botanical and gene-ecological studies for selecting bio-diversity and gene conservation stands. 2. Reserved forest for gene pool should be extented both economically important tree spp. and non-economical species. 3. Reserved forest for progeny test and clone bank should be systematically investigated for the use of Ex situ forest gene conservation. 4. We have to find out a new methodology of genetic analysis determining the proper and effective size of subpopulation for in situ gene conservation. 5. We should develop a new tree breeding systems for successful gene conservation and utilization of the genetic resources. 6. New method of in-facility gene conservation using advanced genetic engineering should be developed to save time and economic resources. 7. For the conservation of species with short-life span of seed or shortage of knowledge of seed physiology, tissue culture techniques will be played a great role for gene conservation of those species. 8. It is are very useful conservation not only of genes but of genotypes which were selected already by breeding program. 9. Institutional and administrative arrangements including legistlation must be necessarily taken for gene conservation of forest trees. 10. It is national problems for conservation of forest resources which have been rapidly destroyed because of degenerating environmental condition and of inexperienced management system of bio-diversity and gene conservation. 11. In order to international cooperation for exchanging data of bio-diversity and gene conservation, we should connect to international net works as soon as possible.

  • PDF

Increased Protein of the Secretory Leukocyte Pretense Inhibitor (SLPI) and the Expression of Growth Factors in NIH3T3 Cells by LPS Stimulation (NIH3T3 세포주에서 LPS자극에 의한 분비백혈구단백분해효소억제제 (SLPI)의 단백질증가와 성장인자들의 발현)

  • Lee, Sang-Hwa;Choi, Baik-Dong;Jeong, Soon-Jeong;Jang, Hyun-Seon;Kim, Byung-Ock;Lim, Do-Seon;Park, Joo-Cheol;Wang, Guan-Lin;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.165-172
    • /
    • 2006
  • Secretory leukocyte protease inhibitor (SLPI) involves tissue protection against the destructive action of neutrophil elastase at the site of inflammation. Several studies on new functions of SLPI have demonstrated that SLPI may play a primary role in innate immunity than protease inhibitor, To identify the function of SLPI by lipopolysaccharide (LPS) stimulation in the embryonic fibroblast (NIH3T3) cells. we studied the expression of SLPI compared to other growth factors involving the LPS treatment. To address this, we performed the reverse transcriptase polymerase chain reaction (RT-PCR) and Western blots for the detection of mRNA and protein expression of the SLPI and some growth factors such as VEGF. bFGF, and PDGF-BB after LPS stimulation. NIH3T3 cells were exposed 100 ng/mL Escherichia coli LPS for 30min, 60min, 90min, 24h, and 48h, respectively. The result of RT-PCR showed that SLPI and VEGF mRNA was expressed strongly in NIH3T3 without related to LPS stimulation. mRNA of bFGF was weakly expressed such as the expression of the control. PDGF mRNA expression gradually increased follows at time course. However, SLPI protein level was increased in lysates and culture medium by LPS stimulation. Phase contrast microscopic and scanning electron microscopic observation showed that the increased cell number and cytoplasmic enlargement of the NIH3T3 cells. Therefore, it suggests that the LPS upregulates SLPI expression in NIH3T3 cells. Moreover, secreted SLPI may stimulate cell proliferation and migration.