• Title/Summary/Keyword: 유전자, P53

Search Result 277, Processing Time 0.019 seconds

Analysis of Differentially Expressed Genes by Resveratrol Using Membrane Microarray (Membrane Microarray를 이용한 Resveratrol에 의해 차별적으로 발현되는 유전자 군의 분석)

  • Kim, Jong-Sik;Jang, Min-Jung;Kim, Hyo-Eun;Kim, Soon-Young;Kim, Byung-Oh;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1115-1120
    • /
    • 2007
  • In the present study, we investigated whether several phytochemicals (resveratrol, genistein, epicatechin gallate, dially disulfide, caffeic acid phenetyl ester) and sulindac sulfide could induce expression of tumor suppressor p53 protein in human colorectal HCT116 cells. We found that p53 was dramatically induced by all phytochemical treatments except sulindac sulfide. Among treated phytochemicals, we selected resveratrol for further experiments because it is one of the highest p53 inducer. Using a Western blot analysis, we found that resveratrol induced p53 in a dose- and time-dependent manner. Additionally, using membrane-based microarray analysis, we found that twenty-five genes were up-regulated and two genes were down-regulated by resveratrol treatment. Among the up-regulated genes, we selected 4 genes and performed reverse-transcription-PCR to confirm microarray data. The results of RT-PCR were highly accorded with those of membrane microarray. In addition, we found that thrombospondin-1 (TSP-1) expression was not dependent on p53 presence, whereas mammary serine protease inhibitor (MASPIN) expression was dependent on p53 expressed by resveratrol treatment. The results of this study may help to promote our understandings of the molecular mechanisms of chemoprevention that are mediated by resveratrol in human colorectal cancer.

Effect of Adenovirus-p53 to Non-Small Cell Lung Cancer Cell Lines (Adenovirus-p53이 비소세포폐암세포 성장에 미치는 영향에 관한 연구)

  • 박종호;이춘택;김주현
    • Journal of Chest Surgery
    • /
    • v.31 no.12
    • /
    • pp.1134-1146
    • /
    • 1998
  • Background: The tumor suppressor gene p53 is one of the most frequently altered genes in human tumors, including those of the lung. There is now a compelling evidence that wild-type p53 can negatively influence cell growth by causing G1 arrest or by inducing apoptosis. The possibilities of using p53 for gene therapy are also gathering much interest. Material and Method: Our approach towards understanding p53 function would be to study the biological consequences of overexpression of wild-type p53 in normal and tumor cells by using adenovirus vectors capable of giving high levels of the p53 gene product in cells. We have used this vector containing wild-type p53 to infect tumor cells with different p53 status (null, mutant, or wild-type) to confirm that expression of p53 in null or mutant cell lines becomes possible by Adenovirus-p53 transduction, to examine the effects of high levels of p53 expression on the growth properties of tumor cells, to evaluate the role of apoptosis in p53-mediated biological effects, and to examine the effect of Adenovirus-p53 on the tumorigenicities of the lung cancer cell lines in vitro. Result: The results of our study showed that cells expressing endogenous mutant p53 and those devoid of p53 expression altogether were significantly more sensitive to Adenovirus-p53-mediated cytotoxicity compared to tumor cells expressing endogenous wild-type p53 and that overexpression of wild-type p53 induced programmed cell death. Also we knew that Adenovirus-p53 significantly reduced tumor colony formation of human non-small cell lung cancer cell lines, and decreased the growth of pre-formed colonies in vitro. Conclusion: These results suggest that adenovirus is an efficient vector for mediating transfer and expression of tumor suppressor genes in human non-small cell lung cancer cells and that the tumor cells null for p53 or expressing mutant p53 readily undergo apoptosis by Adenovirus-p53.

  • PDF

Mutations of p53 Tumor Suppressor Gene in Human Lung Cancer Cell Lines (사람 폐암세포주에서 p53 종양억제유전자의 변이)

  • Hong, Weon-Seon;Hong, Seok-Il;Lee, Dong-Soon;Son, Young-Sook;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.6
    • /
    • pp.653-658
    • /
    • 1993
  • Background: Recent advancement of molecular genetics has revealed that malignant transformation of a cell may be a complex multistep process and this process is grouped, in general, into two distinct categories, activation of protooncogenes and inactivation of tumor suppressor genes. This study was focused on the mutation of p53 tumor suppressor gene, because p53 gene mutation is now generally accepted to be one of the most frequent genetic changes in a variety of human cancers. Although lung cancer is one of the common cancers in Korea, the genetic change in the carcinogenesis process is not yet known clearly. To investigate the role of p53 gene mutation in lung cancer, we examined the mutations of exon 4-8 of the p53 gene in humna lung cancer cell lines, because most of the mutations of p53 gene have been reported to develop in exon 4-8. Method: Genomic DNA was obtained by the digestion of proteinase K and the extraction by phenol-chloroform-ethanol method from two human pulmonary adenocarcinoma cell lines, PC-9 and PC-14, and one human small cell lung cancer cell line, H69. To detect the mutations of exon 4-8 of the p53 gene, polymerase chain reaction single-strand conformation polymorphism(PCR-SSCP) analysis was performed with the DNA extracted from the cells. Results: The mutation of p53 gene was present in all three cell lines tested. In PC-9, PC-14 and H69, the altered mobility was detected in exon 7, 7 and 5, respectively. Conclusion: These results suggest that p53 gene mutation plays an important role in certain steps of the carcinogenesis of human non-small cell and small cell lung cancer.

  • PDF

Comparison of p53 Mutation in Non Small Cell Lung Cancer Between Young Patients and Old Patients (약년자 폐암과 노년자 폐암에서 변이형 p53 발현의 비교)

  • Shin, Kyeong-Cheol;Lee, Kwan-Ho;Shim, Young-Ran
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.4
    • /
    • pp.533-541
    • /
    • 1999
  • Background: Lung cancer in younger patients seems to be a more aggressive disease and their prognosis may be worse than that of older patients. Abnormal p53 expression in primary lung cancer may be an independent prognostic factor for poor prognosis. This study was conducted to determine the difference of abnormal p53 mutation in patients with primary non-small cell lung cancer (NSCLC) under 45 years of age and 55 years old or greater. Method: The present study was performed to compare the clinical and pathological features of primary NSCLC between patients younger than 45 years old and older than 55 years old and to evaluate the difference of abnormal p53 mutation between two groups. Immunohistochemical detection of abnormal p53 mutation was assessed in all primary NSCLC specimens by pathologist. Results: Positive nuclear staining of p53 mutation was found in 76.0% of younger patients and in 76.9% of older patients with variable intensity of staining. And there was no significant correlation between abnormal p53 mutation according to the disease stage or histologic subtype. Conclusion: In this investigation, these were no difference in p53 mutation between two groups.

  • PDF

Expression of Human p53 Gene as Glutathione S-transferase Fusion Proteins in Escherichia coli (사람의 p53 유전자와 Glutathione S-Transferase와의 융합 단백질의 대장균에서의 발현)

  • 오상진
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.279-285
    • /
    • 1993
  • Alterations of the p53 gene arc among the most frequent genetic changes in human cancer and often result in increased levels of p53 protein within the malignant cells. Detection of accumulated p53 protein can be a useful prognostic tool in human cancer. In order to make polyclonal antibodies for immunohistochemical screening. human p53 gene was expressed in E. coli in the form of GST (glutathione S-transfi.:rase) fusion proteins. Two p53 gene fragments. which were N('()I small fragment encoding amino acid residues of 1-151-: and Ncol large fragment of 159-393. were subeloned into the unique BamHI site present within the pGEX-2T vector using BamHI linker and recombinant plasmids pGTNS and pGTNL were constructed. respectively. The p53 cDNA fragment (from pC53-$SN_3$,) encoding amino acid 38-145 (proline at residue 72) was amplified by polymerase chain reaction(PCR). The amplified DNA was digested with BamHI and Prull and inserted into the BamHI-Smal sites of pG EX-2T and recombinant plasmid pGTBP was constructed. After IPTG induction of these plasmids for 4 hours. fusion proteins were purified from E. coli extracts with glutathione Sepharose beads. The bound proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis and the molecular weights were 54 kDa. 53 kDa and 40 kDa. respectively. Approximately one milligram of fusion proteins were purified from 1 -liter cultures.

  • PDF

Optimized Germination Conditions and Human p53 Expression of Rice Embryo (쌀눈 발아의 최적조건 확립 및 p53 항암 유전자의 발현)

  • Pih, Kyung-Tae;Choi, Ju-Youn;Kim, Keun-Cheol
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.158-163
    • /
    • 2015
  • Rice embryo is more abundant than endosperms in nutrients such as proteins, lipids, and vitamin B1. In this study, we constructed p53 plasmid that could be expressed in a plant system, and investigated optimal germination conditions in a variety of media. For construction of p53 plasmid, we performed p53 amplification from pCDNA-p53, subcloned to TA cloning vector, and then reconstructed into pGEM-CaMV plant expression vector. On the other hand, we prepared a variety of imbibition buffers and complete media for efficient germination of the rice embryo. Imbibition buffers prepared with different concentrations of salt or detergent showed no significant effect on germination efficiency. We prepared further culture media, such as solid agar, liquid media, and paper towel to establish the optimal conditions. Rice embryo showed germination rates of more than 70% in the solid medium, more than 60% in the paper towel medium, but less than 25% in liquid media, although germination rate did not differ with varying concentrations of salt and sucrose in culture media. Under the optimal germination conditions, we introduced the p53 plasmid using imbibition method, and finally detected human p53 gene expression in the germinated rice embryo. This method might present a novel, practical approach for evaluating efficient gene expression utilizing imbibition method in rice embryo.

Analysis of p53-Dependency of Differentially Expressed Genes by Capsaicin in Human Colorectal Cancer Cell (인간 대장암 세포주에서 capsaicin 처리에 의한 차별적인 유전자 발현의 p53 의존성 분석)

  • Kim, Hyo-Eun;Jang, Min-Jeong;Lim, Seung-Hyun;Kim, Hyo-Rim;Kim, Soon-Young;Lee, Gun-Joo;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • In the present study, we investigated anti-proliferative activities of capsaicin and gene expression changes in response to capsaicin treatment in human colorectal HCT116 cells. The results showed that capsaicin decreased cell viabilities in a dose dependent manner and induced global gene expression changes. We found that 103 genes were up-regulated more than twofold, whereas 153 genes were down-regulated more than twofold by $100\;{\mu}M$ capsaicin treatment. Among the up-regulated genes, we selected 4 genes (NAG-1, DDIT3, GADD45A and PCK2) and performed RT-PCR to confirm the microarray data. We found that $100\;{\mu}M$ of capsaicin increased tumor suppressor p53 gene expression. In addition, the results showed that NAG-1, DDIT3 and GADD45A expressions were not dependent on p53 presence, whereas PCK2 expression. The results of this study may help to increase our understandings of the molecular mechanism of anti-proliferative activity mediated by capsaicin in human colorectal cancer cells.

Analysis of p53 and Retinoblasoma(Rb) Gene Polymorphisms in Relation to Lung Cancer in Koreans (한국인 폐암 환자에 대한 p53 및 Rb유전자의 다형성 분석)

  • Lee, Kyung-Sang;Sohn, Jang-Won;Yang, Suck-Chul;Yoon, Ho-Joo;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee;Lee, Chun-Geun;Cho, Youl-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.534-546
    • /
    • 1997
  • Background : The p53 and retinoblastoma(Rb) tumor suppressor genes are associated with the pathogenesis of several types of human cancer. Substantial proportion of the primary lung cancers or cell lines have been reported to have the p53 and/or the Rb gene mutations. But, so far there is no report on the analysis of the Rb gene polymorphism as one of the genetic susceptibility marker. This study was undertaken to establish the gene frequencies of the polymorphic genotypes of the p53 and Rb genes in Koreans to evaluate the possible involvement of these genotypes as a risk factor of lung cancer. Methods : In this study 145 controls without previous and present tumor history and 128 lung cancer patients were subjected to analysis. The two intragenic polymorphisms of the p53 gene(exon 4/ AccII, intron 6/MspI) and one intron 17/XbaI polymorphism of the Rb gene were analysed by the method of polymersae chain reaction- restriction fragment length polymorphisms(PCR-RFLPs). The genotype of the intron 3/16 bp repeat polymorphism of p53 was determined by PCR and direct gel electrophoresis. Results : There were no significant differences in the genotype distributions of the p53 gene between lung cancer patients and controls. But heterozygotes(Arg/Pro) of the exon 4/AccII polymorphisms were slightly over-represented than controls, especially in the Kreyberg type I cancer, which was known to be associated with smoking. The intron 3/16 bp duplication and the intron 6/MspI polymorphisms were in complete linkage disequilibrium. About 95% of the individuals were homozygotes of the common alleles both in the 16 duplication and MspI polymorphisms, and no differences were deteced in the genotype distributions between lung cancer patients and controls. Overall genotype distributions of the Rb gene polymorphisms between lung cancer patients and controls were not significantly different However, the genotype distributions in the Kreyberg type I cancer were significantly different from those of controls(p = 0.0297) or adenocarcinomas(p = 0.0008). It was noticeable that 73.4% of the patients with adenocarcinomas were heterozygotes(r1/r2) whereas 39.2% of the Kreyberg type I cancer were heterozygous at this polymorphisms. In the lung cancer patients, significant differences were also noted between the high dose smokers and low dose smokers including non-smokers(p = 0.0258). The relative risk to Kreyberg type I cancer was significantly reduced in the individuals with the genotype of r1/r2(odds ratio = 0.46, 95% C.I. = 0.25-0.86, p = 0.0124). The combined genotype distribution of the exon 4 AccII of the p53 and the intron 17 Rb gene polymorphisms in Kreyberg type I cancers were significantly different from dose of controls or adenocarcinomas. The highest odds ratio were observed in the individuals with the genotypes of Arg/Pro and r2/r2(odds ratio = 1.97,95% C.I. = 0.84-4.59) and lowest one was in the patients with Arg/Arg, r1/r2 genotype(odds ratio = 0.54, 95% C.I. = 0.25-1.14). Conclusion : The p53 and the Rb gene polymorphisms modulate the risk of smoking induced lung cancer development in Koeans. However, the exact mechanism of risk modulation by these polymorphism remains to be determined. For more discrete clarification of associations between specific genotypes and lung cancer risk, the evaluations of these polymorphisms in other ethnics and more number of patients will be needed.

  • PDF

Detection of p53 Mutation in Colorectal Cancer Using PCR-SSCP and DHPLC (대장암에서 PCR-SSCP와 DHPLC를 이용한 p53 돌연변이의 검출)

  • Sang-Bum Park;Sang-Man Han;Youn-Hyoung Nam;Won-Cheoul Jang
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.460-465
    • /
    • 2003
  • Structural alteration of p53 and overexpression of p53 protein are the most common genetic abnormalities in various kinds of human cancer. Mutations in the p53 tumor-suppressor gene are usually associated with an advanced development of colorectal cancer characterized by the transition from the adenoma to carcinoma stage. Mutations in exons 5-8 of the p53 gene were analyzed by the polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP) and denaturing high performance liquid chromatography(DHPLC). SSCP analysis detected 7 mutations(C13109>T) in 50 colorectal cancer samples(14%) at exon 5, and DHPLC analysis detected 7 mutations (C13109>T) and 2 mutation(C13202>A, C13204>G) in 50 colorectal cancer samples(18%) at exon 5. All of 9 mutations were proved by sequencing analysis. We conclude that DHPLC is a highly sensitive and specific method for p53 gene mutations.

Expression of Jun and p53 Genes from the Brain of Rats Irradiated with $^{60}Co{\gamma}$-ray (감마선 조사에 의한 뇌조직의 Jun 및 p53유전자 발현)

  • Kim Yong Seok;Woo Chong Kyu;Lee Yong Sung;Koh Jai Kyung;Chun Ha Chung;Lee Myung Za
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.265-279
    • /
    • 1996
  • Damage produced by radiation elicits a complex response in mammalian cells, including growth rate changes and the induction of a variety of genes associated with growth control and apoptosis. At doses of 10,000 cGy or greater, the exposed individual was killed in a matter of minutes to a couple of days, with symptoms consistent with pathology of the central nervous system(CNS) including degenerative changes. The nature of the damage in irradiated cells underlies the unique hazards of ionizing radiation. Radiation injury to CNS is a rare event in clinical medicine, but it is catastrophic for the patient in whom it occurs. The incidence of cerebral necrosis has been reported as high as 16% for doses greater than 6,000 cGy. In this study, the effect of radiation on brain tissue was studied in vivo. Jun and p53 genes in the rat brain were induced by whole body irradiation of rat with 600Co in doses between 1 Gy and 100 Gy and analyzed for expression of jun and p53 genes at the postirradiation time up to 6 hours. Northern analyses were done using 1.8 Kb & 0.8 Kb-pGEM-2-JUN/Eco RI/Pst I fragments, 2.0 Kb-php53B/Bam HI fragment and ,1.1 Kb-pBluescript SK--ACTIN/Eco RI fragment as the digoxigenin or [${\alpha}^{32}P$] dCTPlabeled probes for Jun, p53 and ${\beta}$-actin genes, respectively. Jun gene seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 1 hour after irradiation of $^{60}$Co in dose of 30 Gy. Jun was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in doses of 1 Gy and 10 Gy. After irradiation of $^{60}$Co in dose between 20 Gr and 100 Gy, the expression of Jun was however increased to peak in 2 hours and decreased thereafter. p53 gene in this study also seemed to be expressed near the threshold levels in 1 hour after irradiation of $^{60}$Co in dose less than 1 Gy and was expressed in maximum at 6 hours after irradiation of $^{60}$Co in dose of 1 Gy, p53 was expressed increasingly with time until 5 or 6 hours after irradiation of $^{60}$Co in dose between 1 Gy and 40 Gy. After irradiation of $^{60}$Co in doses of 50 Gy and 100 Gy, the expression of p53 was however increased to peak in 2 hours and decreased thereafter. The expression of Jun and p53 genes was not correlative in the brain tissue from rats. It seemed to be very important for the establishment of the optimum conditions for the animal studies relevant to the responses of genes inducible on DNA damage to ionizing radiation in mammalian cells. But there are many limitations to the animal studies such as the ununiform patterns of gene expression from the tissue because of its complex compositions. It is necessary to overcome the limitations for development of in situ Northern analysis.

  • PDF