• Title/Summary/Keyword: 유연날개

Search Result 34, Processing Time 0.03 seconds

Design of Morphing Airfoil Using Shape Memory Alloy Actuator (형상기억합금 작동기를 이용한 모핑 에어포일 설계)

  • Noh, Mi-Rae;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.562-567
    • /
    • 2016
  • Morphing wing which has a configuration optimized to flight speed and condition is faced to a lot of barriers to be overcome such as actuator technique, structural mechanization technique, flexible skin material, control law, and so on. As the first step for developing a morphing wing with rapid response, we designed and fabricated the morphing airfoil using a SMA(shape memory alloy) wire actuator and torsional bias springs. The design concept of the morphing airfoil was verified through operation test. The measured results show that the flap deflects smoothly and fast.

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Reliability Based Design Optimization of the Flexible Wing (유연 날개의 확률기반 최적 설계)

  • Lee Jaehun;Kim Suwhan;Kwon Jmg Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-190
    • /
    • 2005
  • In this study, the reliablility based design optimization is peformed for an aircraft wing. The flexiblility of the wing was assumed by considering the interaction modeled by static aeroelasticity between aerodynamic forces and the structure. For a multidisciplinary design optimization the results of aerodynamic analysis and structural analysis were included in the optimization formulation. The First Order Reliability Method(FORM) was employed to consider the uncertainty of the designed points.

  • PDF

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.

Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method (병렬 처리를 이용한 부분 시스템 기반 유연다물체 동역학의 효율적인 해석 연구)

  • Han, Jong-Boo;Song, Hajun;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.507-515
    • /
    • 2017
  • Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

NUMERICAL SIMULATION ON FLUID-STRUCTURE INTERACTION OF A TWO-DIMENSIONAL ORBITING FLEXIBLE FOIL (선회하는 2차원 유연 날개의 유체-구조 상호작용 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • The hybrid Cartesian/immersed boundary method is applied to simulate fluid-structure interaction of a two-dimensional orbiting flexible foil. The elastic deformation of the flexible foil is modelled based on the dynamic equation of a thin-plate. At each time step, the locations and velocities of the Lagrangian control points on the flexible foil are used to reconstruct the boundary conditions for the flow solver based on the hybrid staggered/non-staggered grid. To test the developed code, the flow fields around a flapping elliptical wing are calculated. The time history of the vertical force component and the evolution of the vorticity fields are compared with recent other computations and good agreement is achieved. For the orbiting flexible foil, the vorticity fields are compared with those of the case without the deformation. The combined effects of the angle of attack and the orbit on the deformation are investigated. The grid independency study is carried out for the computed time history of the deformation at the tip.

Wing Morphometric Analysis of Psylla elaeagni Complex (Homoptera : Psyllidae) (보리나무이종군의 날개에 대한 수량형태학적 분석 (동시목: 나무이과))

  • Park, Hee-Cheon;Lee, Chang-Eon;Kim, Hoon-Soo
    • Animal Systematics, Evolution and Diversity
    • /
    • no.nspc2
    • /
    • pp.243-250
    • /
    • 1988
  • The wing morphometric characters of P.elaeagni complex feeding on the genus Elaeagnus plants was analysed by the multivariate methods using clustering of generalized distance and discriminant analysis. On the clustering of the species, the effect of sexual differences, seasonal variation and geographic population sensitively appeared . However, four species of this group was precicely divided by the discriminant analysis.

  • PDF

Design and Ground Test of Gust Generator for GLA Wind Tunnel Test (돌풍하중완화 풍동시험을 위한 돌풍발생장치 설계 및 지상시험)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.45-48
    • /
    • 2005
  • Tile gust generator was designed for generating the gust field in the wind tunnel test of the scaled flexible wing model for validating gust response alleviation system. The ground operation test was performed for estimating the dynamic performance of tile gust generator before installing it in the wind tunnel for gust field measurement. The ground test results showed that the gust generator has sufficient dynamic capability to simulate the sinusoidal and random motion of the gust generator wing and thus can be used in the wind tunnel test related to gust.

  • PDF

Taxonomical Review for Tilingia tsusimensis (Apiaceae) (대마참나물(Tilingia tsusimensis, 산형과)의 분류학적 재검토)

  • Kim, Muyeol;So, Soonku;Seo, Eunkyoung;Park, Hyerim;Han, Kyeongsuk;Heo, Kweon
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.4
    • /
    • pp.529-543
    • /
    • 2007
  • It was revaluated about taxonomical position of the Tilingia tsusimensis (Yabe) Kitagawa (Apiaceae) collected from Mt. Gaya, Mt. Geumo, and Mt. Songni in Korea. Its diagnostic features include slightly dorsally compressed mericarps, acute-prominent ribs, ternate leaves, and dimorphic white petals. It is morphologically similar to Cymopterus and Pimpinella in having ternate leaves. It is distinguished from Cymopterus having asymmerty mericarps, 3-4 mericarp ribs, and winged dorsal ribs. Pimpinella differs in having slightly laterally compressed mericarps without ribs and conspicuous calyx teeth. Also, it looks like Angelica with obsolete calyx teeth and multilayer pericarps, but is distinguished by having its broadly winged lateral ribs and strongly dorsally compressed mericarps. Tilingia tsusimensis formed a monophyletic clade or sister group relationship with a genus Angelica based on ITS sequences. Based on the above observations, we conclude that this plant is here referred to T. tsusimensis (Yabe) Kitagawa.

An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior (비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구)

  • Kim, Euiyoung;Chang, Seongmin;Lee, Dongho;Cho, Maenghyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.957-962
    • /
    • 2012
  • Fluid/structure interaction (FSI) analysis is necessary to predict the response of a system in which aerodynamic pressure causes deformation of the structure, and vice versa. In dealing with a nonlinear behavior of the structure, however, a simple iterative algorithm of aerodynamic analysis with structural analysis yields no accurate results since aerodynamic pressure need to be changed in accordance with the deformation of structures. In this study, we explore an efficient and accurate method for integrating FSI analysis into structural nonlinear systems. During the course of nonlinear structural analysis, loading conditions are periodically updated by aerodynamic analysis. The accuracy and efficiency of the method is demonstrated with a high-aspect-ratio flexible wing of Global Hawk.