• Title/Summary/Keyword: 유압 모듈레이터

Search Result 10, Processing Time 0.035 seconds

A Study on the Pulsation Characteristics of ESP Hydraulic Modulator (자동차 ESP 유압 모듈레이터의 수격 특성에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3869-3875
    • /
    • 2012
  • In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed. The pulsation pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the pulsation pressure, high frequency PWM control of 20KHz was attempted. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle electro stability program. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be confirmed criteria for the optimal control of electronic stability program system.

Hydraulic Control Characteristics of the ABS for an Automotive (자동차 미끄럼방지 제동장치의 유압 제어 특성)

  • Kim, Byeong-Woo;Park, Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 2007
  • For the purpose of optimal control of anti-lock brake system, precise dynamic characteristics analysis of the hydraulic modulator, especially solenoid valve is necessary. However, most of researches so law have dealt with dynamic characteristic analysis of valve itself and the results have been restrictive to apply on the actual ABS modulator, where hydraulic pressure is acting. In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed quantitatively and performance improvement methods have been suggested varying the design factor. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized criteria for the optimal control of anti-lock brake system.

  • PDF

보급형 ABS(Anti-Lock Brake System) 개발

  • 김중배;유장열;이병조;채경선;김상국
    • ICROS
    • /
    • v.2 no.1
    • /
    • pp.18-24
    • /
    • 1996
  • 본 연구에서는 향후 초소형, 초저가의 ABS가 개발되어 보편적으로 차량에 장착될 것을 대비해 독자적으로 설계, 제작된 ABS에 대해 제시하고자 한다. 개발의 목표는 유압 모듈레이터의 핵심 부품인 솔레노이드 밸브의 개발과 장착성이 우수한 소형의 PCB(Printed Circuit Board)형의 ECU(Electronic Control Unit)이다. 특히 개발된 밸브의 경우 현재 범용적으로 많이 사용되는 2포지션 2웨이 밸브가 아닌 2포지션 3웨이 밸브이며, 이로써 1채널당 브레이크 라인 압력을 제어하기 위해 1개의 밸브만 소요된다.

  • PDF

A Study on the Pressure Surge of ABS Hydraulic System (ABS 유압 장치의 유충 현상에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.140-147
    • /
    • 2001
  • The solenoid valve in ABS hydraulics, modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the inlet valve is switched from open state to closed state, there are braking force degration, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder. In this study, identifies pressure surge phenomenon in the braking process of a ABS, and investigates the way to reduce the phenomenon. For the purpose theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. During this analysis, we could find pressure surge characteristics change due to hydraulic line change and PWM control conditions. In conclusion, by using the results of this study for the pressure surge prediction and reduction method, we could expect braking performance enhancement in Anti-Lock Braking System.

  • PDF

Analysis of the Characteristics of ASMS Hydraulic Modulator (Automotive Stability Management System) (차량 안정성 제어용 유압 모듈레이터의 특성 해석)

  • Song, Chang-Seop;Kim, Hyoung-Tae;Shin, Sang-Won;Jeong, Tae-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.127-133
    • /
    • 2001
  • In this study, the effect of the factors of a hydraulic modulator of ASMS was analysed. The modeling of ASMS was presented and the equation of ASMS was derived from the modeling. With this background, GUI analysis tool was developed. After the verification of the reasonability of simulation, the response of a hydraulic modulator is investigated through simulation of modeling. With this simulation, each behavior was predicted with changing the various parameters and determined the influenced factors to apply the designing process.

  • PDF

A Study on the Dynamic Characteristics of ABS Hydraulic Control Valve (ABS 유압 제어 밸브의 동 특성 해석에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.121-130
    • /
    • 2001
  • For the purpose of optimal control of anti-lock brake systems, precise dynamic characteristics analysis of hydraulic modulator, especially solenoid valve is necessary. However, most of researches so far have dealt with dynamic characteristic analysis of valve itself, and the results have been restrictively applied to the actual ABS modulator, where hydraulic pressure is acting. In this study, mathmatical modeling and experimental analysis were peformed in order to evaluate the valve dynamic characteristics when the hydraulic pressure is applied. High pressure on the master cylinder that affects on the valve dynamic characteristics have been analyzed quantitatively, and performance improvement methods have been suggested through parameter study. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be utilized as criteria for the optimal control of anti-lock brake systems.

  • PDF

A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle (ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구)

  • Choi, Jong-Hwan;Kim, Wung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

A Study on the Performance Improvement and Simplification of the Modulator for Vehicle Stability Control System (차량 안정성 제어 시스템의 모듈레이터 성능개선 및 단순화에 관한 연구)

  • 이종찬;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.84-93
    • /
    • 2004
  • This study carries out the performance improvement and simplification of hydraulic modulator that plays an important role in vehicle stability control systems. The mathematical models for each component of a modulator, such as pump, wheel cylinder, check and solenoid valve, accumulator, damper are derived in detail. All the mathematical models are combined to form a modulator system and implemented through a computer program, which can be controlled by a user friendly GUI. To verity the simulation, comparison between simulation and experiments has been made. After the verification of the validity of the simulation, the effects of the design parameters of the modulator on the wheel cylinder pressure is investigated. The results show that the modulator without MPA has advantage in early time pressure rise rate, and it can be simplified.

A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System (미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF

Study on the Characteristics of Control by High Frequency ECU for Braking System (제동 시스템을 위한 고주파수 ECU의 제어 특성 연구)

  • Yeon, Kyu-Bong;Chong, Jong-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2428-2434
    • /
    • 2012
  • This paper describes the control of a solenoid valve of ESC(Electronic Stability Control) with hydraulic modulator in braking system. ESC ECU(Electronic Control Unit) to control the high-frequency control and slope control method was applied, the surge pressure and EMI(electromagnetic interference) reduction characteristics were studied. The stage of ECU output was added the slope shaping function to reduce electromagnetic emission at higher frequencies. Measurements show that this high frequency ECU manages to reduce the surge pressure and electromagnetic emission by the control of solenoid valve. In conclusion, by using the results of this study for the high frequency ECU control, we could expect enhancement of braking system performance.