• Title/Summary/Keyword: 유압펌프

Search Result 249, Processing Time 0.037 seconds

A Study on Design of Notches in Valve Plate of Swash Plate Type Axial Piston Pumps Operated Bi-directionally (양방향 구동 사판식 액시얼 피스톤 펌프의 밸브 플레이트 노치 설계에 관한 연구)

  • Choi, Sae Ryung;Lee, Ill Yeong;Han, Sung Min;Shin, Jung Woo
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2016
  • Flow and pressure ripple in swash plate type piston pumps is largely dependent on the design of notches(silencing grooves) in the valve plate. In uni-directional pumps, the basic design concept for notches in the valve plate could be said to be established. It is easily deduced that the design concept for notches in uni-directional pumps can not be simply applied to bi-directional pumps requested for EHA(electric hydrostatic actuators). To carry out systematic research on technological issues regarding notch applications to bi-directional piston pumps, five notch designs are devised. The effects of the notch designs on the characteristics of the pump are investigated by numerical simulations and experiments. Through this study, basic concepts about notch design for bi-directional piston pumps are suggested.

A Study for Development of Hydraulic Piston Pump for Driving Rescue Equipment (구난장치 구동용 유압 피스톤 펌프 개발에 관한 연구)

  • Lee, Jihwan;Lee, Kyongjun;Kim, Kyung Soo;Kang, Myeong Cheol;Lee, Hyun Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • This paper investigated design requirements for piston pumps, which were used as the power source of light rescue vehicle, and designed a piston pump satisfying such requirements. In order to satisfy the driving specification of the rescue device, the pump needs to be designed using the displacement volume of 110 cc/rev, the pressure of 350 bar and the rotation speed of 2,200 rev/min. The design was verified by flow and structural analyses respectively. The shape of the piston pump was optimized in terms of both flow characteristics and structural stability. A test equipment was also fabricated to verify the developed piston pump and test conditions were established. Finally, the developed piston pump was tested for its performance and operating temperature.

Study for the Actuation of Lifter by the Bi-Directional Pump and Single-Rod Cylinder (양방향펌프와 편로드실린더에 의한 리프터의 구동에 관한 연구)

  • Lee, Seong-Rae;Kim, Je-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.139-145
    • /
    • 2007
  • The motion of single-rod cylinder is typically controlled by the directional control valve. In some case, the hydraulic system should be energized by the man power and at the same time the motion of a cylinder is controlled manually. It may be confusing for a man to do two things at the same time. The solution is to make up the closed hydraulic circuit with the bi-directional pump and single-rod cylinder without using a directional control valve. In the case of single-rod cylinder, the flows at the rod side and head side are so different that several valves should be installed to make the motion of single-rod cylinder possible. The hydraulic system is composed of a bi-directional pump, a single-rod cylinder, pilot operated check valves, a check valve and a counter balance valve for the purpose of actuating the lifter. The characteristics of a suggested system are analysized mathematically and numerically.

An Analysis on Volumetric Displacement of Hydraulic Gerotor Pump/Motor using Energy and Torque Equilibrium - First Report: Case of Rotation of Inner and outer Rotors - (에너지보존과 토크평형을 이용한 제로터 유압 펌프/모터의 배제용적 해석 - 내·외부로터 회전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • It is difficult to analytically derive a volumetric displacement formula of gerotor hydraulic pump/motor because geometric shape of rotors is complicated. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic energy of the pump/motor and mechanical input/output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The formula about the volumetric displacement is derived for the common case of inner and outer rotors rotate with respect to fixed axes. The formula is verified by comparing another analytical displacement formula, and it is numerically verified by comparing numerical results, which is calculated for geometric specification of a motor. The numerical displacement is calculated through CAD software program and MATLAB program. The proposed analytical formula can be utilized in analysis and design of hydraulic gerotor motors.

Development of the Linear Piston Pump Driven by the Hydraulic Power for the Solid Transferring (고형물 이송을 위한 유압구동 선형 피스톤 펌프의 개발)

  • Kim, Bong-Hwan;Ahn, Kook-Chan;Chung, Sung-Won;Kim, Young-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • The purpose of this study is to investigate the actual field application of the linear piston pump for the solid transferring driven by the hydraulic power unit. In this paper, the numerical analysis and performance evaluating experiments were performed. CFX program has been used to obtain the solutions for the problems of three-dimensional, turbulent water flow in the linear piston pump. The velocity and the pressure distributions are obtained using the turbulent $k-\varepsilon$ model. To evaluate the performance of the linear piston pump, the performance test stand and data acquisition system were manufactured. The numerical predictions agree favorably with experimental results within 7% error. Speed of the piston which is satisfied the flow rate 3,000l/min which considers from basic design became 0.33m/s. This paper could be applied to the design of the linear piston pump for the fish transferring.

  • PDF

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

A Study of the Fluidic Characteristics of High-Pressure Fuel Pumps for GDI Engines (GDI 고압펌프의 유동특성에 관한 연구)

  • Lee, Sangjin;Noh, Yoojeong;Liu, Hao;Lee, Jae-Cheon;Shin, Yongnam;Park, Yongduk;Kang, Myungkweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • A high-pressure fuel pump is a key component in a gasoline direct injection (GDI) engine; thus, understanding its flow characteristics is essential for improving the engine power and fuel efficiency. In this study, AMESim, which is a hydraulic analysis program, was used to analyze the performance of the high-pressure fuel pump. However, since AMESim uses a one-dimensional model for the system analysis, it does not accurately analyze the complicated flow characteristics. Thus, Fluent, computational fluid dynamics (CFD) software, was used to calculate the flow rates and net forces at the intake and discharge ports of the high-pressure fuel pump where turbulent flow occurs. The CFD analysis results for various pressure conditions and valve lifts were used as look-up tables for the AMEsim model. The CFD analysis results complemented the AMEsim results, and thus, improved the accuracy of the performance analysis results for the high-pressure fuel pump.

Effect of Low Left Atrial Pressure on the Pump Output of Left Ventricular Assist Device (좌심방압 변화가 좌심실보조기 박출량에 미치는 영향에 대한 연구)

  • Choi, J.W.;Lee, S.W.;Jung, C.I.;Kim, H.R.;Lee, Y.K.;Lee, K.H.;Kim, C.S.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.141-145
    • /
    • 1992
  • 심부전 환자의 심근회복을 도울 수 있는 장비인 전기유압방식 좌심실보조기를 개발하였다. 좌심실보조기는 혈액펌프, 압력펌프, 제어기로 구성되어 있으며, 혈액펌프에 내장된 혈액주머니는 동물실험을 위하여 50 ml의 크기로 제작하였다. 좌심실보조기의 성능평가를 위하여 최대 박출량을 측정하고 있으나 실험실에서 측정된 간은 동물 실험에서 관찰되는 것보다 일반적으로 증가된 박출량을 보이게 된다. 이는 생체에서는 좌심방의 체적이 박동 주기에 따라 변하여 좌심실보조기가 받아들일 수 있는 유효 혈액량이 변하는 반면, 모의순환장치에서는 좌심방을 단순 저장고로 사용하기 때문에 좌심방의 박동주기에 따른 체적변화를 감안하지 못하여 생기는 것이다. 본 실험에서는 모의순환 장치에 체적변화 가능한 100ml 크기의 좌심방을 연결하여 좌심방으로 들어오는 혈류량이 제한된 동물실험 상황을 모방하였다. 좌심실보조기의 제어방식중 수측기 이완기 비율(SD 비율)변화에 따른 좌심방 음압발생효과를 관찰한 결과 SD 비율을 40 %로 유지하면 행정거리가 클때도 좌심실의 음압발생을 줄일 수 있는 것을 관찰하였다.

  • PDF

A Study on the Trapping Phenomenon and Relief Port Position of Oil Hydraulic Gear Pump (유압 기어펌프의 폐입현상과 릴리프 홈의 위치에 관한 연구)

  • 김철호;노춘경;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.133-140
    • /
    • 1999
  • It is possible for a volume of fluid to become trapped in the space between two adjoining teeth ad the tips of the teeth engage in Gear Pump with involute teeth. This trapped fluid leads to several harmful results, for example fluctuating pressure and aeration of pump. In this study, hence, theoretical and experimental analyses on this 'Trapping' were accomplished as using relief port(or escape port), one of the means for avoid it. Also, the grasp and analysis on variational type of the internal pressure in parallel with above experiments are achieved so that hydrodynamic behaviors in pump were contemplated.

  • PDF

A study on the characteristics of dynamic pressure in cylinder pen of hydraulic axial piston pump (유압 액셜 피스톤 펌프의 실린더 포트 내부 비정상 압력특성에 관한 연구)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.209-214
    • /
    • 1999
  • Dynamic pressure is one of the major sources on noise emission in hydraulic axial piston pump. This paper reports an experimental study of dynamic pressure characteristics in the cylinder port of hydraulic axial piston pump. We investigated dynamic pressure with not only the effect of delivery pressure, rotational speed and temperature but also V-notches at the ends of the kidney ports in the valve plate. We experimented three valve plates with three type V-notches at the ends of the kidney ports, because V-notches of the valve plate is known of noise reduction. Finally, we hope this paper help to design of the valve plate in hydraulic axial piston pump.

  • PDF