• Title/Summary/Keyword: 유압시스템

Search Result 735, Processing Time 0.022 seconds

An Experimental Evaluation of a Hydraulic Tilting Actuator for a Diagnosis of Load Characteristics Acting on the Tilting Actuator of the Tilting Train (틸팅열차의 틸팅구동장치에 작용하는 부하특성 진단을 위한 유압식 틸팅 엑츄에이터의 실험적 평가)

  • Lee, Jun-Ho;Kim, Ho-Yeon;Lee, Byeong-Song;Lee, Hyung-Woo;Park, Chan-Bae;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.921-927
    • /
    • 2012
  • In this paper we deal with a hydraulic tilting actuator to make a diagnosis of load characteristic acting on the tilting actuator of the tilting train. Tilting actuator in the tilting train plays a role of making tilt of the train when the train runs a curve section to make the train run without deceleration. However in the process of tilt the tilting actuator is affected by the load acting on the actuator, which has a possibility to make bogie vibration. In order to figure out the effect of the load on the tilting actuator a hydraulic tilting devices that are capable of tilting the train is proposed. The proposed devices are installed in the front bogie and in the rear bogie to make tilting of the train. The devices are consist of sensors that measure the load capacity of the actuator and displacement of the hydraulic cylinder stroke, control blocks to make synchronization of the two actuators, user interface block to monitor the status of the actuators. The effectiveness of the proposed hydraulic tilting actuators is presented by the experimental evaluation using actual tilting train.

Study on Model Based Control for the Roll Motion of an Underwater Robot (수중로봇의 롤 운동제어를 위한 모델 베이스 제어에 관한연구)

  • Kim, Chi-Hyo;Park, Woo-Kun;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.323-330
    • /
    • 2009
  • We have been developing an underwater robot for harbour construction using a parallel mechanism The robot is attached to the rope of a crane, which curries a large stone into the undersea The robot's yaw and pitch are controlled by hydraulic cylinders but its roll is uncontrollable. We mount propellers in both side of the robot to generate the roll motion This paper studies on the control for the roll motion of a underwater robot. A gyro-sensor is used to measure the angle in a roll motion We develop the dynamic model to describe the robot's roll motion by a second order non-linear system and identify the model parameters by recursive least square and adaptive identifier. PD control, recursive model based control and adaptive model based control are applied with the dynamic model which computes the control input to compensate disturbances. This paper introduces the underwater robot system and presents the simulated and experimental results of the proposed controller.

Study on Dynamic Characteristics and Performance of Tip Jet Rotor Using Small-scaled Rotor (축소로터를 이용한 Tip Jet 로터의 성능 및 동특성 연구)

  • Kwon, Jae Ryong;Baek, Sang Min;Rhee, Wook;Lee, Jae Ha
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • In this study, a small-scaled test system for a tip jet rotor was developed to contribute to the research on unmanned compound rotorcraft. The performance and dynamic characteristics of the tip jet rotor were investigated using the test system. The diameter of the tip jet rotor was set to 2m in consideration of the size of the test site and the pneumatic supply capacity of the. The rotating speed of the rotor was controlled by the pressure of the compressed air. The thrust and forces during the rotor rotation were measured using a load measuring device. A hydraulic actuator was installed for the dynamic test and full-bridge strain gages were attached to the root of each blade to measure the flap, lag, and torsion-wise responses generated when the rotor is excited by the actuator. The performance and dynamic characteristic tests were conducted at various rotor speeds and blade pitches. In order to check the validity of the test results, the results were also compared with the CAMRAD II analysis.

Development of Intelligent Excavating System;Introduction of research center (지능형 굴삭시스템 개발;연구단 소개)

  • Seo, Jong-Won;Park, Chang-Woo;Jang, Dal-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.197-204
    • /
    • 2007
  • Nowadays, the construction industry is suffering from the decrease of labor productivity caused by the lack of skilled workers and the aging labor forces. The hazardous work conditions and safety problems still exist at the construction sites. The earthwork operation is not the exception. The number of skilled earthwork equipment operators has been rapidly reduced and the equipment needs to be operated in dangerous / hazardous work sites. Thus, through the development of intelligent excavating system, Intelligent Excavating System(I.E.S) research team tries to enhance the safety of work environment, productivity, quality, and payability of the earthwork operation. It is also expected that this research contributes to the development of fundamental construction automation technologies and to the creation a new market sector.

  • PDF

Review of BLAC Motor and Drive Technology for Electric Power Steering of Vehicles (자동차용 EPS의 BLAC 모터 및 제어기술의 고찰)

  • Cho, Kwan-Yuhl;Kim, Hak-Wone;Cho, Young-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4083-4094
    • /
    • 2011
  • The Electric Power Steering (EPS) has been applied to the vehicles due to its better fuel efficiency, better steering feel, and the compact volume compared to the hydraulic power steering. The brushed PM (Permanent Magnet) DC motors had been adopted in most of the EPS systems until several years ago due to its easy control and a simple hardware configuration of the power converter, but nowadays the BLAC (Brushless AC) motor is becoming more popular for the EPS system because of its high efficiency and long lifetime. This paper reviews the configuration of the EPS system and the BLAC motor and drive technologies based on the papers published recently. The torque ripple reduction for steering feel and the fault detection algorithms for safety are also reviewed.

Development of ROV Trencher URI-T and its Sea Trial (URI-T, 해저 케이블 매설용 ROV 트렌처 개발 및 실해역 성능 검증)

  • Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Ki, Geonhui;Kim, Min-Gyu;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.300-311
    • /
    • 2019
  • An ROV trencher is a type of heavy-duty work class ROV equipped with high-pressure water jet tools for cutting into the sea floor and burying cables. This kind of trencher is mostly used for PLIB operations. This paper introduces the development of this kind of ROV trencher, which has a 698 kW power system, with a 250 kW hydraulic system and two 224 kW water jet systems. The project was launched in January 2014. After four years of design, manufacturing, and system integration, we carried out two sea trials near the Yeongilman port (about 20-30 m in depth) in Pohang to evaluate the system performance in November 2017 and August 2018. Through tests, we found that most of specifications were satisfied, including a maximum bury depth of 3 m, maximum bury speed of 2 km/h, and maximum forward speed of 1.54 m/s.

Investigation on Design and Impact Damage for a 500W Wind Turbine Composite Blade (500W급 풍력발전기 복합계 블레이드의 설계 및 충격손상 안전성 연구)

  • Kong, Chang-Duk;Choi, Su-Hyun;Park, Hyun-Bum;Kim, Sang-Hoon
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.22-31
    • /
    • 2009
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the 500W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The wind turbine blade was performed structural analysis including stress, deformation, buckling, vibration and fatigue. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. MSC.Dytran was used in order to analyze the bird strike penomena on the blade, and the applied method Arbitrary Lagrangian-Eulerian was evaluated by comparison with the previous study results. Finally, the structural test was carried out and its test results were compared with the estimated results for evaluation of the designed structure.

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.

A Study on the Division and Rounding of Systems Design and Review (밀반죽의 분할과 둥굴이기 시스템설계 및 고찰)

  • Kwon, Yunjung;Lee, Seungbeom;Nam, Sangyep
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.129-134
    • /
    • 2017
  • In the present society, our current technology associated with bakery industry has been improved as much as technical development can get abreast of the Western one where the bread has originated and has been awarded and ranked in the highest level of many bakery or pastry competitions. In these trends, many people are running for high value added business such as bakery industry and bakery $caf{\acute{e}}$, etc. with big interest. However, high labor cost of technician and difficulties in human resource management become obstruction factors in the growth of the bakery industries. Therefore, in this paper, the designed system for both dividing and rounding dough quickly and exactly at the same time was studied. The main function of this system is to divide the original dough into 3 tracks and then, to place 4 doughs in the inner track, 12 doughs in the mid track, 20 doughs in the outer track, totally 36 doughs in a routine. It takes much energy because 36 doughs can be completed in a routine. Therefore, this system uses hydraulic pressure and a 0.75Kw induction motor is used for dough rounding. This system can make primarily fermented dough into 36 divided doughs very quickly and exactly on a guide panel at the desired weight by dividing it within 1-9 seconds and by rounding each within 1-9 seconds. This system is very effective in bakery industry to minimize labor cost and it is expected to supply more hygienic products to the customers.