• Title/Summary/Keyword: 유압굴삭기

Search Result 79, Processing Time 0.029 seconds

A study on Energy Saving of the Excavator using Electro-Hydraulic Actuator (전기-유압 액추에이터를 이용한 굴삭기 에너지 절감에 관한 기초 연구)

  • Yoon, Hong-Soo;Ahan, Kyung-Kwan;Lee, Byung-Lyong;Kang, Jong-Min;Kim, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.801-805
    • /
    • 2008
  • Today, hydraulic systems play an important role in modern industry for the reasons that hydraulic actuator systems take many advantages over other technologies with high durability and the ability to produce large forces at high speeds. In recent years, electro-hydraulic actuator systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. Moreover these systems resolve energy consumption and noise problems characteristic existed in the conventional hydraulic systems. Therefore, these systems have a wide range application fields especially in an excavator. So the purpose of this paper is to demonstrate efficiency of the energy saving and present some control algorithms which apply to electro-hydraulic actuator system in the bucket of the excavator. Experiments are carried out to verify the effectiveness of the proposed system with various external loads as in real working conditions.

  • PDF

Development of Extra-large Hydraulic Breaker (초대형 유압브레이커 개발)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3081-3086
    • /
    • 2015
  • Development of a extra-large hydraulic breaker, which could be used for a 100 ton-class excavator were carried out Hot-firing tests were carried out. Before designing a hydraulic breaker, the analysis method to predict the performance such as impact energy and impact rate were studied. Based on the analysis result, the design and manufacture of a extra-large hydraulic breaker were performed, and the breaker were confirmed to operate successfully. The data of impact energy and impact rate were measured during the operation of the breaker, and were compared with the analysis result. The analysis result of impact rate anticipated well the test data, but that of impact energy showed a large difference with the test data. The extra-large hydraulic breaker were successfully developed and the analysis method of impact energy will be updated taking into account friction, hydraulic circuit, etc.

A Case Study for the reduction of Mini Excavator Radiated Noise (소형 굴삭기 방사소음 개선 사례)

  • Park, Jaesung;Park, Soodong;Cho, Hee;Kim, Juho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.488-489
    • /
    • 2014
  • This paper is a case study for the reduction of excavator Radiated noise. The main purpose of the study is to reduction noise for the cooling fan and hydraulic line which is main noise source of the excavator. Recent, noise regulations for the construction equipment is becoming stricter. Compare to past excavator drivers requirements for noise level demanding are becoming more and more. Therefore, this progress is an important role in determining the quality of the excavator.

  • PDF

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Excavation Control of a Hydraulic Excavator with Fuzzy Logic Controller (퍼지 제어기를 이용한 유압 굴삭기의 굴삭 제어)

  • Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2763-2765
    • /
    • 2000
  • The interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition. operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a fuzzy logic controller (FLC) which controls the position of excavator's attachment. This approach enables the transfer of human heuristics and expert knowledge to the controller. Expeiments are carried out to check the performance of the FLC.

  • PDF

Measurement of Static and Dynamic Stress and Motion Characteristics of Excavators (굴삭기의 정적/동적 응력 및 구동 특성 계측)

  • Kim, Gyu-Sung;Choung, Joon-Mo;Jang, Young-Sik;Choe, Ick-Hung;Lee, Joon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.473-478
    • /
    • 2003
  • This paper presents static and dynamic measurement of the stress and motion characteristics for crawler type excavators. Eight scenarios were prepared for static measurement based on two extreme digging positions, maximum digging reach position and maximum digging force position. The measured items for static motion included stress, cylinder pressure, cylinder stroke and digging force. The measured static stresses showed that asymmetric digging force acting on a bucket induced higher stress level than symmetric one. The measured static pressures and digging forces also agreed with design pressures and design digging forces, respectively. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of each cylinder and actual digging motion. The measured items for dynamic motion were stroke and pressure of each cylinder, stresses on the working device and acceleration on the upper plate of an arm. The measured data showed that the natural frequency of the excavator highly depended on the hydraulic stiffness of cylinders. Digging motion tests revealed that digging motion was closer to static motion rather than dynamic one.

  • PDF

Development of the HPM System to Improve Efficiency of the Hydraulic Excavator (유압식 굴삭기 효율 향상을 위한 HPM 시스템 개발)

  • Kwon, Yong Cheol;Lee, Kyung Sub;Kim, Sung Hun;Koo, Byoung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • The HPM (High-speed Power Matching) system is an electro-hydraulic control system. It directly controls the swash plate of the pump by selecting four-loop logic based on joystick signals, pump flow, and pressure signal to improve the efficiency and controllability of construction machines. In the NFC (Negative Flow Control) system, a typical pump control system using conventional open center type MCV, the loss is continuously generated by flow through the center bypass line even when the excavator is not in operation. Also, due to the slow response of the pump that indirectly controls the flow rate using the pressure regulator, peak pressure occurs at the start or stop of the operation. Conversely, the HPM system uses an MCV without center-by-pass flow path and the swash plate of a pump for the HPM is controlled by a high-speed proportional flow control valve. As a result, the HPM system minimizes energy loss in standby state of the excavator and enables peak pressure control through rapid electro-hydraulic control of a pump. In this paper, the concept of the HPM system algorithm is introduced and the hydraulic system efficiency is compared with the NFC system using the excavator SAT (System Analysis Tool).

건설기계용 주행모터의 기술동향

  • Lee, Yong-Beom
    • 기계와재료
    • /
    • v.22 no.3
    • /
    • pp.88-95
    • /
    • 2010
  • 국내외 대형 플랜트사업이 활발해지면서 여기에 소요되는 건설기계의 수요가 급증하고 특히 초 대형화가 요구되고 있다. 그러나 국내 건설기계는 장비중량이 40ton 이하인 것을 주로 생산하고 있었으나, 최근 이것에 2배가 넘는 85ton급 초대형을 생산하고 있다. 주행모터(track motor)는 굴삭기의 전진 및 후진 주행을 하는 핵심 부품으로서 유압카운터 밸런스 밸브, 양방향작동 릴리프밸브, 주차 브레이크 장치, 2속 제어장치, 유압모터와 고 강성 유성기어감속기가 매우 콤팩트한 구조로 구성된다. 우리나라에서는 두산모트롤, 제일유압, 선진정공 등에서 40ton 이하의 중소형 건설기계용 주행모터를 생산하고 있으나, 70ton 이상 초대형 급은 일본 Kayaba사, Kawasaki사, 독일 Rexroth사 및 이태리 Trasmital사 들로부터 전량수입에 의존하고 있다. 본고에서는 건설기계의 핵심부품인 주행모터의 국내외 수요시장 동향을 분석하여 국산화 개발필요성을 강조하였고, 특히 초대형 주행모터의 성능특성을 분석하여 국산화 개발에 반영 할 수 있도록 하였다.

  • PDF

Closed loop type MCV(Main Control Valve) for Hydraulic Excavator (유압 굴삭기용 폐루프 타입 MCV(Main Control Valve))

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF