• Title/Summary/Keyword: 유성기어 시스템

Search Result 33, Processing Time 0.028 seconds

풍력발전시스템용 증속기 신뢰성 확보 기술

  • Lee, Geun-Ho;Park, Yeong-Jun
    • Journal of the KSME
    • /
    • v.54 no.7
    • /
    • pp.40-45
    • /
    • 2014
  • 풍력발전시스템은 육상용에서 해상용으로 개발되며 대형화하고 있는 추세이다. 풍력발전시스템이 해상용 등으로 대형화되면서 유지, 보수에 높은 비용이 소요되고 이에 따라 신뢰성을 확보하기 위한 요구가 더 커지고 있다. 증속기의 경우 고장 빈도도 낮지 않고, 고장 발생 시 심각도가 높아 신뢰성이 가장 높게 요구된다. 최근 증속기의 신뢰성을 확보하기 위한 연구 개발에서 수명에 가장 영항을 크게 미치는 조건으로 적용하중 영향에 대한 비토크 하중(non-torque load)과 유성기어열의 설계 인자로 취급되는 하중 분할(load sharing), 치면 하중 분포(face-load distribution) 그리고 이를 필수적으로 입증하고자 요구되는 시험/평가 기술에 대하여 소개하고자 한다.

  • PDF

Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines (5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계)

  • Jeong, Ki-Yong;Lee, Dae-Yeon;Choi, Eun-Ho;Cho, Jin-Rea;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • The thickness optimization of the gearbox housing for 5MW wind turbine is carried out with the help of the efficient structure analysis model and the approximation model of objective function. Wind turbine gearbox is a complex structural system composed of a number of gear trains, shafts, bearing and gearbox housing, requiring a tremendous number of elements for the structural analysis and design. In this paper, an effective analysis and design model considering the tooth stiffness of helical gears is proposed. It enables to significantly reduce the total element number and the analysis time. Through the numerical optimization of housing thickness making use of the effective gearbox model and the approximate model of objective function, the total weight of the gearbox housing is minimized. It has been observed from the numerical experiment that the approximation model is reliable and the optimization result is acceptable and verified analysis.

Strength and Durability Analysis of the Double Planetary Gears (복합유성기어의 강도 및 내구성 해석)

  • Han, Sung Gil;Shin, Yoo-In;Yoon, Chan Heon;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • A planetary gear train is more compact and endures greater amounts of transmission power compared to other gear systems. Although planetary gear systems operate in small volumes, they are capable of very high efficiency due to the compact combination of their gears in the planetary gear system. They also have outstanding efficiency of only 3% for power transmission, tantamount to the power loss that occurs in each of the shift stages. Given these advantages, planetary gear systems are used in the driving systems of, which are widely used in automobile transmissions, machine tools, semiconductor equipment, and in other areas in industrial fields. Current structural equipment requires higher efficiency and greater torque levels. According to these needs, we have designed a complex planetary gear system which creates higher levels of torque. In this paper, an evaluation of strength designs for the proposed planetary gear system was conducted to ensure the stability of the gear. In addition, a durability analysis based on Miner's rule was performed using RS B 0095 device.

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (II): Development of the Automatic System Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (II): 시스템 자동결합 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the automatic system generation algorithm based on the element combination algorithm discussed in the first part of this paper for designing an arbitrary type of the automatic transmissions is proposed. The powertrain design software using these algorithms is developed. This automotive powertrain design software with user-friendly graphic user interface has two main modules. The first module, the automatic power flow generation module, is already discussed in the previous paper. The second module dealing with the automatic system generation algorithm is discussed in this paper. The power-flow simulation software fur the arbitrary type of powertrain is then developed. The simulation and experimental results of the vehicle equipped with two planetary gear type automatic transmission are compared to validate the proposed algorithms and developed software. The simulation results demonstrate the good agreement with the experimental results.

Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines (풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석)

  • Kim, KwangMin;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.

자동차용 무단 변속기

  • 김만식;최영덕
    • Journal of the KSME
    • /
    • v.32 no.10
    • /
    • pp.858-866
    • /
    • 1992
  • 지난 십여 년 전부터 자동차 연비에 관한 법적 규제가 강화되고 소비자의 자동 변속기에 대한 기대치가 증가하면서, 오랜 역사를 가지면서도 신뢰성의 부족 등의 이유로 그 동안 유단 자동 변속기에 가리어 빛을 보지 못하던 무단 변속기가 관련 소재 및 가공 기술의 발달에 힘입어 점차 주목을 받고 있다. 여기서는 자동차용으로 사용될 수 있는 무단 변속기의 핵심 요소인 무단 변 속기구 몇 가지에 대하여 소개하고 최근의 무단 변속기 개발 동향에 대하여 소개하기로 한다. 그리고 여러 가지 무단 변속기 중에서 무단 변속 기구와 유성 기어를 사용하여 구성할 수 있는 무단 변속기의 구조와 특성에 대하여 논하고 이러한 특성을 이용하여 구성할 수 있는 무단 변 속기의 시스템 구성 원리와 작동 원리에 대하여 소개하기로 한다

  • PDF

Analysis of the Efficiency of the Compound-split Hybrid Systems (복합 유성 기어로 구성된 하이브리드 시스템 효율 분석)

  • Kim, Nam-Wook;Yang, Ho-Rim;Cho, Sung-Tae;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 2007
  • The efficiency of the hybrid systems which are composed of compound planetary gear sets depend on the amount of the recirculating energy among the motors and battery. This paper studies the analysis of the system efficiency with the parameters, ${\alpha},\;{\beta},\;{\gamma_a},\;{\gamma_b}$ and $\gamma_s$. The efficiency of the systems and the relative torque, speed and power of the power resources are represented by these parameters. The recuperating parameter $\kappa$ which makes the systems generalized is introduced, so the efficiencies of the modes such as the hybrid mode, the engine mode, the motoring mode and the recuperating mode are analyzed with simple equations. The tendency of the system efficiency according to the variations of the $\gamma_s$ and $\kappa$ are studied, by which it can be possible to reduce the loss of the power because the strategies for avoiding the singular speed ratio $\gamma_s$ are helpful for the system efficiency and specific value of $\kappa$ can increase the efficiency of the systems.

Performance Characteristics of Electric Powertrain Parts for Power Split Type HEV at Steady Speed (Power Split Type HEV 차량 정속주행시 전기동력부품 성능특성)

  • Kim, Chai-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.182-186
    • /
    • 2007
  • This paper studied performance characteristics of hybrid automotive to replace existing fossil fuel vehicles. Specially, about power split type HEV that is T-HEV's drive system when a vehicle drives at steady speed, monitored both output of each engine, motor and generator and battery SOC (state of charge) and analyzed performance characteristic of power transmission system and electricity power parts. This study shows those that acquired and analyzed information from signals between HCU and each controller of actual T- vehicle. From this study, it is confirmed that each conditions of EV and HEV drive can be a improvement with respect to the fuel efficiency of vehicles.

750kW급 Geared Type 풍력발전시스템 개발

  • Cha, Jong-Hwan;Han, Sang-Yeol;Lee, Ho-Jun;Go, Jang-Uk;Lee, Hyeon-Ju;O, Si-Deok;Sin, Hyeong-Gi;Lee, Su-Gap;Kim, Tae-Uk;Seong, Dae-Yeong;Park, Seong-Bae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.219-228
    • /
    • 2005
  • 본 연구에서는 에너지 및 환경에 대한 문제가 대두되면서 기술 개발의 필요성이 높아지고 있는 풍력발전시스템에 대하여 750kW급 Geared Type 가변속 풍력 발전시스템을 개발하였다. 풍력발전시스템이 급속히 대용량화됨을 고려하여 MW급의 기술 조합이 반영되도록 설계하였으며, 베어링과 같은 국내 인프라가 부족한 구성품을 제외한 모든 구성기기들을 자체 설계/제작하였다. 블레이드는 국내 풍황에 적합하도록 자체 에어포일을 설계하여 개발하였으며, 가변속 제어를 위한 이중 여자 유도발전기 및 제어기와 Down sizing 구현을 위한 유성 및 헬리컬 기어 혼합형 증속기를 개발하여 시동 풍속 3.5m/s, 정지 풍속 25m/s, 정격 풍속은 12.7m/s이며 IEC 61400-1의 Class I 에 준한 750kW급 풍력 발전시스템을 개발하였다.

  • PDF

Development of device measuring very high torque via torque arm with attached load cells (로드셀과 토크암을 이용한 대용량 토크 측정장치 개발에 관한 연구)

  • Lee, Y.B.;Han, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.6-10
    • /
    • 2010
  • A measurement of very high torque for track drive unit in construction equipment is usually in difficulties due to the requirement of a torque meter with high capacity, and the limitation of geometry for an experimental set-up. To improve the troublesome problem, a new device was proposed, where a torque transmitted through the torque arm can be measured by load cells attached at each torque arm. The experimental set-up of the new device was carried out in order to measure the torque values for a mechanical feedback type planetary gear box, in which the power flow circulates itself in a closed-loop. The new device enables to measure torque values of 60,000Nm. Additionally, the measured values were estimated statistically in the aspect of their repeatability and reproducibility, so that an acceptable behaviour as a measuring device can be confirmed.

  • PDF