인터넷의 사용 증가로 정보의 양은 기하급수적으로 증가하고 있으며 웹 데이터의 표준인 XML의 데이터 표현의 유연성으로 인해 EDMS(Electronic Document Management System), ebXML(e-business extensible Markup Language) 등 웹 기반의 전자문서론 이용하는 시스템들은 XML를 문서 교환 방식 및 표준 문서 형식으로 도입하고 있는 실정이다. 그러므로 점차 확산되어 가고 있는 XML 문서에 대한 효율적인 문서의 관리와 검색을 위한 연구가 필요하다. 이 논문에서는 다중 문서간의 구조적 유사성을 분류하기 위하여 엘리먼트의 순서적 의미를 갖는 XML 문서를 대상으로 순차패턴을 이용하여 문서의 특성을 반영하는 대표구조를 추출하고 추출된 구조를 기반으로 유사 구조 문서를 클러스터링하는 방법을 제시한다. 이 논문의 제안 알고리즘은 클러스터의 응집도와 클러스터간의 유사도를 함께 고려하는 비용계산 방식을 이용하므로써 클러스터링의 정확도를 높일 수 있는 효과를 얻을 수 있다.
비디오 스트림은 다차원 공간에서 데이터 포인트의 시퀀스로 표현될 수 있다. 본 논문에서는 시퀀스 내의 데이터 포인트들의 값들의 근사치에 대한 정보와 시퀀스 내의 포인트들의 방향성에 대한 정보를 내포하고 있는 트랜드 벡터(trend vector)에 대한 소개와 이 벡터를 이용하여 데이터 시퀀스를 위한 유사 패턴 검색 기법을 제안한다. 시퀀스는 복수 개의 세그먼트로 분할되며 각 세그먼트는 트랜드 벡터로 표현된다. 질의처리는 시퀀스 내의 각각의 포인트들에 대하여 수행되는 대신, 트랜드 벡터들에 대하여 처리된다. 제안한 기법은 이 벡터를 사용하여 질의와 무관한 데이터 시퀀스들을 데이터베이스로부터 여과하고 질의 시퀀스와 유사한 시퀀스들을 검색하도록 설계되었다. 제안한 기법을 검증하기 위하여 비디오 스트림과 가상으로 생성된 데이터에 관하여 실험을 수행하였으며, 실험 결과 제안한 기법의 정밀도(precision)는 기존의 방법에 비하여 2.1배까지 향상되었으며 처리시간은 45%까지 감소되었음을 보여주고 있다.
데이터 클러스터링은 서로 유사한 성질을 갖는 데이터들은 동일한 클러스터에 분류하고, 이질적인 데이터는 다른 클러스터에 분류하여, 클러스터 내의 유사성은 최대로 하고 클러스터와 클러스터사이의 유사성을 최소로 하는 것을 말한다. 데이터 클러스터링은 데이터 마이닝, 기계 학습, 패턴 인식, 통계 분야 등에 다양하게 활용되고 있다. Hopfield 네트워크는 조합적 최적화 문제를 해결하는데 사용되어 좋은 결과를 나타내고 있다. 본 논문에서는 Hopfield 네트워크를 사용하여 데이터 클러스터링 문제를 해결하는 알고리즘을 연구하였고, 실험을 통해 기존의 방법과 비교하였다.
본 논문에서는 웨이브릿 변환 영역에 제안한 알고리듬으로 여러 공격에 강인한 워터마크를 삽입하였다. 추출된 워터마크는 정칙화 영상복원에 활용하는 Tikhonov-Miller 처리를 함으로써 워터마크의 유사성 판별을 쉽게 하였다. 제안한 방법의 강인성과 유사성 향상을 실험하기 위해 명암, 크기 변화, 필터링, 잘라내기, 히스토그램 평활화, 손실압축(JPEG, gif)과 같은 영상처리를 하였다. 실험 결과 제안한 방법은 비가시성을 고려한 강인한 워터마크를 삽입할 수 있고 여러 공격에 대해서 더욱 높은 상관 계수로 추출할 수가 있었다.
패턴인식은 전처리 과정에서 패턴들의 특징을 추출하고 이를 학습을 통하여 유사한 패턴들끼리 클러스터링을 한 다음 식별 과정을 거쳐 인식하게 된다. 본 연구에서는 OCR 시스템에서의 패턴 인식을 위한 패턴 분류 모델로서 퍼지 멤버쉽 함수를 도입하여 LVQ 학습 알고리즘을 최적화한 F-LVQ(Fuzzy Learning Vector Quantization)를 제안한다 본 논문의 효율성을 검증하기 위하여 한글 및 영어 22종의 글꼴에 대한 숫자 데이타 220개 패턴을 학습한 후 이를 다양한 형태로 변형시킨 4840개의 테스트 패턴에 대하여, 기존의 여러 가지 패턴 분류 모델과의 비교 분석을 통해 그 유효성과 강인성을 증명하였다.
플라즈마에 레이저 빛을 입사한 후 CCD 소자로 획득한 영상은 검고 밝은 픽셀로 이루어지며 이를 플라즈마 스펙클 패턴이라 정의한다. 그림 1은 $NH_3$ 플라즈마에서 획득한 스펙클 패턴을 보이고 있다 [1]. 광학에서 스펙클 패턴은 빛의 산란을 이용해 정의하고 있지만 최근의 연구에서 이 같은 정의가 잘 못되어졌음이 보고된 바 있다 [2]. 스펙클 패턴은 입사된 빛 물질과 빛 물질 에너지를 흡수하는 표면 플라즈몬 캐리어 (surface plasmon carriers-SPC)가 함께 공존하는 전자계 에너지 필드라고 정의된 바 있다 [2]. 플라즈마 스펙클 패턴은 진공이 SPC와 같은 음의 물질과 입자로 채워져 있다는 가정에 기초하고 있다 [1]. 새로이 정의된 스펙클 패턴은 전하가 없는 photon 모델과는 달리 빛이 양의 전하를 가지고 있다는 사실에 기초한 것이며, 이는 최근의 빛 물질 수집과 관련한 실험적 연구 [3], 빛 물질의 화학적 원소 분석 [4], 빛 물질의 양의 입자성 [5]에 근거를 두고 있다. 빛 물질은 그림 2 [6] 에서와 같이 물 방울을 태양 또는 레이저 빛에 노출시켜 용이하게 수집할 수 있다 [3-6]. 플라즈마 스펙클 패턴에서 픽셀합 분포함수 (pixel sum distribution function-PSDF)을 구할 수 있으며, PSDF에서 추출한 정보는 optical emission spectroscopy, langmuir probe로 수집한 데이터와 매우 유사한 경향성을 보였다 [1, 6]. 이는 스펙클 패턴이 플라즈마의 광학적 전기적 정보를 저장하고 있음을 의미한다. 본 발표에서는 새로운 플라즈마 진단 방식으로서의 스펙클 이미징 시스템, 동작원리, 물리적 기초, 그리고 응용사례 등을 살펴본다.
시계열 데이터에서 패턴을 찾고 검색하는 문제는 여러 분야에서 오랫동안 관심을 가지고 연구되어 왔다. 본 논문은 시간의 흐름에 따라 값의 변화를 나타내는 시계열 형태의 주식 데이터에 적용할 수 있는 새로운 패턴 매칭 방법을 제안한다. 우선, 의미를 기반으로 패턴을 정의하고 정의된 패턴에 일치하는 데이터들을 추출하여 학습모델을 작성한다. 그리고 새로운 질의 시퀀스가 어떤 종류의 패턴과 일치하는가는 각 학습 모델과의 유사도를 측정하여 결정하게 된다. 학습 모델은 시계열을 잘 설명하는 것으로 알려진 은닉 마코프 모델을 사용하여 작성하였다. 실험 결과 은닉 마코프 모델의 특성을 사용하여 생성된 각 학습 모델은 주어진 의미를 잘 나타내는 패턴을 생성하였으며, 새로운 시퀀스가 주어졌을 때 일치하는 패턴에 따라서 시퀀스가 가진 의미를 파악할 수 있었다.
패턴인식은 주위 환경을 관찰하는 방법, 배경으로부터 관심있는 패턴을 구분하는 방법, 소리를 얻는 방법, 그리고 패턴 범주들 중에서 타당한 결정을 얻는 방법에 관한 연구이다. 패턴인식 시스템을 설계할 때 필수적으로 1) 데이터의 획득과 전처리, 2) 데이터의 표현, 3) 결정방법 선택과 같은 세 가지 사항을 고려해야한다. 그 이유는 영상을 획득하기 위한 센서의 선택, 전처리 기법, 표현 기법, 의사결정 모델에 따라 인식의 결과가 달라질 수 있기 때문이다. 컬러영상은 다양한 컬러 패턴으로 구성된다. 대부분의 패턴인식 방법은 훈련되어진 컬러정보를 사용하여 컬러의 특징을 추출한다. 본 논문은 몇 가지 제한된 컬러를 가진 영상으로부터 특정한 컬러 패턴을 적응적으로 추출한다. 컬러 패턴의 수가 한정되어 있기 때문에 영상에서 컬러의 분포가 유사하다. 그러나, 영상에 잡음이나 열화가 존재하면, 그 분포가 변화한다. 그러므로 이미 알고 있는 컬러정보를 가지고 특정한 컬러의 특징을 추출할 수 없다. 그래서 본 논문에서는 유사한 컬러 패턴을 가진 영상에 대하여 특정한 컬러의 특징을 적응적으로 추출함으로서 인식의 오류를 감소시킬 수 있는 새로운 방법을 제안한다. 제안한 방법을 실험하기 위하여 열화가 적은 표본영상을 사용하고, 잡음과 열화가 포함된 여섯 가지의 검사영상을 사용한다. 결론적으로 제안한 방법이 통계적인 패턴인식의 결과보다 정확한 결과를 보여준다.
한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
/
pp.117-123
/
2004
마이크로어레이 (microarray) 기술이 개발된 후로 연관된 유전자 클러스터 (cluster)를 찾는 문제는 깊이 연구되어왔다. 이 문제는 핵심적인 과제 중 하나는 생물학적으로 타당한 클러스터의 수를 결정하는 데 있다. 본 논문은 최적의 클러스터 수를 결정하는 기준을 제시하고, non-negative factorization (NMF)를 이용해 클러스터 centroid의 패턴을 찾는 방법을 제안한다. NMF에 의해 발견된 각각의 패턴은 생물학적 프로세스의 특정 부분으로 해석될 수 있다. NMF는 factor matrix의 entity를 non-negative로 제약 (constraint)하고, 이 제약은 오직 additive combination만 허용하기 때문에 이러한 부분적인 패턴을 찾아낼 수 있다. NMF의 유용성은 이미지 분석과 텍스트 분석에서 이미 입증되어 있다. 본 논문에서 제안한 방법에 의해 위의패턴과 유사한 발현 패턴을 갖는 유전자를 모을 수 있었다. 제안된 방법은 human fibroblast데이터와 yeast cell cycle 데이터에 적용해 성능을 입증하였다.
본 연구에서는 집단화 알고리즘을 이용하여 한국어 단독음의 표준 패턴을 설정하였다. Minimax기법을 이용하여 각 단독음에 대하여 최고 3개까지 표준패턴을 설정하여 인식하였다. 특징 파라미터는 선형예측계수와 자기 상관 계수를 이용하였으며 패턴들 간의 유사도 비교는 Itakura가 제안한 거리측정법을 이용하였다. 표준패턴을 1개만 설정하였을 때 $55.9\%$, 2개를 설정했을 때 $76.9\%$, 3개를 설정했을 경우는 $89.5\%$의 인식률을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.