온톨로지 매핑은 서로 다른 온톨로지에 있는 클래스가 유사한 개념을 표현한 것인지 판단하는 문제이다. 클래스 유사도를 계산 하는 방법에는 클래스의 이름 어휘 유사도, 의미 유사도, 클래스 관계/속성 유사도 그리고 클래스 상하위 관계 유사도 등이 제안되었다. 본 논문에서는 이러한 클래스 유사도를 계산하기 위한 반복적 유사도 계산 알고리즘을 제안한다. 매 반복 단계마다 모든 클래스 쌍의 유사도를 전부 갱신 하는 방법과 유사도가 최대인 쌍만 선택적으로 갱신 하는 방법을 비교 실험하였다. 실험 결과 유사도가 최대인 쌍만 업데이트하는 방법의 성능이 좋았고 소요시간도 적었다.
문서와 문서간의 유사도들 측정하는 방법 은 크게 지문법 (fingerprint)을 이용한 방법과 서열 정렬(sequence alignment)알고리즘을 이용한 방법이 있다. 두 방법은 각각 속도와 정확도라는 장점을 가지고 있다. 다단계정렬(MLA, Multi-Level alignment))는 이러한 두 방법을 조합하여 탐색 속도와 정확도 사이의 비중을 사용자가 결정할 수 있도록 하기 위한 방법이다.[1] 다단계 정렬은 두 문서를 단위 블록(basis block)로 나누고 블록 간의 벡터를 비교하여 유사도를 측정하게 되는데, 본 연구에서는 초성 추출 및 어간 추출을 통해 단위 블록의 벡터를 빠른 시 간에 생성하고 비교하는 방법과 다단계 탐색을 통해 정확도를 유지하면서 빠르게 유사도를 측정하는 방식에 대해 설명한다. 실험결과 제안 방법을 통해 다단계 정렬 방법을 이용한 대용량 문서 비교의 속도가 2 배 이상 빨라짐을 보인다.
본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.
자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.
본 논문에서는 청각 기억 게임을 위하여 두 개의 소리 파형을 비교하여 파형의 리듬 유사도를 정량적으로 측정하는 기술을 제안한다. 제안한 방법은 두 입력 파형에 대하여 에너지 변화, 에너지 피크의 지속 시간, 음색 등을 분석하여 각 파형에 포함된 비트 위치를 검출하고, 두 파형의 템포 차이와 비트 수의 차이를 보상하는 과정을 통하여 두 파형의 리듬 벡터를 각각 정의한다. 다음, 두 리듬 벡터 사이의 차이와 비트 수의 차이를 적용하여 두 입력 파형의 리듬 유사도를 정량적으로 표현하는 식을 정의한다. 제안한 방법으로 측정한 리듬 유사도와 주관적 청취 평가로 측정한 리듬 유사도를 비교하였으며, 두 방법에 의한 리듬 유사도가 상관도 0.86을 가지는 것을 확인하였다.
전역적 질의확장 검색에서 단어간 공기기반 유사도를 사용할 경우에는 질의에 추가되는 용어에 부여하는 탐색가중치로 질의와의 유사도를 사용하는 것이 일반적이다. 그러나 과연 유사도가 탐색가중치로 최적인가는 의문의 여지가 있다. 추가용어와 질의 사이의 유사도가 가지는 특성을 살펴보고 고정가중치를 부여한 경우와 비교해보았다. 또한 실험집단이나 확장범위의 영향을 덜 받는 최적화된 추가용어 가중치를 찾기 위해 여러 가지 탐색가중치 공식을 실험하였다.
본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.
이 논문에서는 수정된 Sequential Algorithmic Schema를 이용해서 여러 장소를 이동하면서 찍은 디지털 이미지를 효율적으로 분류할 수 있는 방법을 제안한다. 제안하는 방법은 이웃 패턴들과 특징 정보의 연속성, 유사성을 가지며 들어오는 입력 패턴에 대해 기존의 모든 군집과 유사도를 비교하는 방법이 아니라 이전 군집의 정보와 유사도를 비교하여 군집에 포함시키거나 동적으로 군집을 생성하는 효율적인 군집화 방법이다. 제안한 방법은 실험을 통해서 기존의 군집화 기법에 성능 및 속도의 효율성을 증명하였다.
시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.
절차지향 소프트웨어를 객체지향 소프트웨어로 변환하는 여러 가지 방법이 존재한다. 프로그램을 변환하기 위하여 일반적으로 함수, 변수와 자료형들 간의 관계를 이용한다. 이들간의 관계성을 이용하면 결과로서 객체 후보가 생성된다. 생성된 객체 후보와 영역 전문가에 의하여 생성된 영역 모델을 비교하여 두 모델간의 유사성을 측정하여야 한다. 본 논문에서는 클래스의 시그너처(클래스 이름, 속성의 이름, 속성의 자료형, 메소드 이름, 메소드의 리턴형, 메소드 파라미터의 자료형)을 이용하여 클래스와 객체 후보의 유사도를 측정하고, 측정된 유사도의 평균값을 이용하여 객체 후보군의 유사도를 측정한다. 기존의 연구 방법과는 다르게 n개의 클래스와 m개의 객체 후보사이의 구문적 측면의 유사도 측정뿐만이 아니라 의미적 측면의 유사도를 측정하는 방법을 제시하여 최적합 객체 후보군을 추출하도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.