• 제목/요약/키워드: 유사도비교

검색결과 2,183건 처리시간 0.033초

반복적 알고리즘을 이용한 온톨로지 매핑 (An iterative algorithm for Ontology mapping)

  • 안진현;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-18
    • /
    • 2009
  • 온톨로지 매핑은 서로 다른 온톨로지에 있는 클래스가 유사한 개념을 표현한 것인지 판단하는 문제이다. 클래스 유사도를 계산 하는 방법에는 클래스의 이름 어휘 유사도, 의미 유사도, 클래스 관계/속성 유사도 그리고 클래스 상하위 관계 유사도 등이 제안되었다. 본 논문에서는 이러한 클래스 유사도를 계산하기 위한 반복적 유사도 계산 알고리즘을 제안한다. 매 반복 단계마다 모든 클래스 쌍의 유사도를 전부 갱신 하는 방법과 유사도가 최대인 쌍만 선택적으로 갱신 하는 방법을 비교 실험하였다. 실험 결과 유사도가 최대인 쌍만 업데이트하는 방법의 성능이 좋았고 소요시간도 적었다.

  • PDF

다단계정렬을 활용한 효율적인 문서 유사도 비교법 (An effective method for comparing similarity of document with Multi-Level alignment)

  • 서종규;황혜련;조환규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.402-405
    • /
    • 2012
  • 문서와 문서간의 유사도들 측정하는 방법 은 크게 지문법 (fingerprint)을 이용한 방법과 서열 정렬(sequence alignment)알고리즘을 이용한 방법이 있다. 두 방법은 각각 속도와 정확도라는 장점을 가지고 있다. 다단계정렬(MLA, Multi-Level alignment))는 이러한 두 방법을 조합하여 탐색 속도와 정확도 사이의 비중을 사용자가 결정할 수 있도록 하기 위한 방법이다.[1] 다단계 정렬은 두 문서를 단위 블록(basis block)로 나누고 블록 간의 벡터를 비교하여 유사도를 측정하게 되는데, 본 연구에서는 초성 추출 및 어간 추출을 통해 단위 블록의 벡터를 빠른 시 간에 생성하고 비교하는 방법과 다단계 탐색을 통해 정확도를 유지하면서 빠르게 유사도를 측정하는 방식에 대해 설명한다. 실험결과 제안 방법을 통해 다단계 정렬 방법을 이용한 대용량 문서 비교의 속도가 2 배 이상 빨라짐을 보인다.

어휘 유사 문장 판별을 위한 BERT모델의 학습자료 구축 (Methodology of Developing Train Set for BERT's Sentence Similarity Classification with Lexical Mismatch)

  • 정재환;김동준;이우철;이연수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.265-271
    • /
    • 2019
  • 본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.

  • PDF

BERT 기반 한국어 문장의 유사도 측정 방법 (Measuring Similarity of Korean Sentences based on BERT)

  • 현종환;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

청각 기억 게임을 위한 리듬 유사도 측정 기술 (Measurement of Rhythmic Similarity for Auditory Memory Game)

  • 김주완;이세원;박호종
    • 한국음향학회지
    • /
    • 제30권3호
    • /
    • pp.136-141
    • /
    • 2011
  • 본 논문에서는 청각 기억 게임을 위하여 두 개의 소리 파형을 비교하여 파형의 리듬 유사도를 정량적으로 측정하는 기술을 제안한다. 제안한 방법은 두 입력 파형에 대하여 에너지 변화, 에너지 피크의 지속 시간, 음색 등을 분석하여 각 파형에 포함된 비트 위치를 검출하고, 두 파형의 템포 차이와 비트 수의 차이를 보상하는 과정을 통하여 두 파형의 리듬 벡터를 각각 정의한다. 다음, 두 리듬 벡터 사이의 차이와 비트 수의 차이를 적용하여 두 입력 파형의 리듬 유사도를 정량적으로 표현하는 식을 정의한다. 제안한 방법으로 측정한 리듬 유사도와 주관적 청취 평가로 측정한 리듬 유사도를 비교하였으며, 두 방법에 의한 리듬 유사도가 상관도 0.86을 가지는 것을 확인하였다.

질의확장 검색에서의 추가용어 가중치 최적화 (Optimizing the Weight of Added Terms in Query Expansion)

  • 정영미;이재윤
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2002년도 제9회학술대회 논문집
    • /
    • pp.241-246
    • /
    • 2002
  • 전역적 질의확장 검색에서 단어간 공기기반 유사도를 사용할 경우에는 질의에 추가되는 용어에 부여하는 탐색가중치로 질의와의 유사도를 사용하는 것이 일반적이다. 그러나 과연 유사도가 탐색가중치로 최적인가는 의문의 여지가 있다. 추가용어와 질의 사이의 유사도가 가지는 특성을 살펴보고 고정가중치를 부여한 경우와 비교해보았다. 또한 실험집단이나 확장범위의 영향을 덜 받는 최적화된 추가용어 가중치를 찾기 위해 여러 가지 탐색가중치 공식을 실험하였다.

  • PDF

Lip-synch application을 위한 한국어 단어의 음소분할 (The segmentation of Korean word for the lip-synch application)

  • 강용성;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.509-512
    • /
    • 2001
  • 본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.

  • PDF

Modified Sequential Algorithmic Schema를 이용한 디지털 사진의 효율적인 분류 (Modified Sequential Algorithm schema for Efficient Digital Image retrieval)

  • 이상린
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.237-240
    • /
    • 2007
  • 이 논문에서는 수정된 Sequential Algorithmic Schema를 이용해서 여러 장소를 이동하면서 찍은 디지털 이미지를 효율적으로 분류할 수 있는 방법을 제안한다. 제안하는 방법은 이웃 패턴들과 특징 정보의 연속성, 유사성을 가지며 들어오는 입력 패턴에 대해 기존의 모든 군집과 유사도를 비교하는 방법이 아니라 이전 군집의 정보와 유사도를 비교하여 군집에 포함시키거나 동적으로 군집을 생성하는 효율적인 군집화 방법이다. 제안한 방법은 실험을 통해서 기존의 군집화 기법에 성능 및 속도의 효율성을 증명하였다.

  • PDF

상품 분류 체계를 고려한 구매이력 유사도 측정 기법 (Purchase Transaction Similarity Measure Considering Product Taxonomy)

  • 양유정;이기용
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.363-372
    • /
    • 2019
  • 시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.

영역 모델과 객체후보군의 유사도 측정에 관한 연구 (A Study on the Degree of Signature Similarity between Domain Model and Object Candidate Groups)

  • 박성옥;노경주;이문근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (1)
    • /
    • pp.522-524
    • /
    • 1999
  • 절차지향 소프트웨어를 객체지향 소프트웨어로 변환하는 여러 가지 방법이 존재한다. 프로그램을 변환하기 위하여 일반적으로 함수, 변수와 자료형들 간의 관계를 이용한다. 이들간의 관계성을 이용하면 결과로서 객체 후보가 생성된다. 생성된 객체 후보와 영역 전문가에 의하여 생성된 영역 모델을 비교하여 두 모델간의 유사성을 측정하여야 한다. 본 논문에서는 클래스의 시그너처(클래스 이름, 속성의 이름, 속성의 자료형, 메소드 이름, 메소드의 리턴형, 메소드 파라미터의 자료형)을 이용하여 클래스와 객체 후보의 유사도를 측정하고, 측정된 유사도의 평균값을 이용하여 객체 후보군의 유사도를 측정한다. 기존의 연구 방법과는 다르게 n개의 클래스와 m개의 객체 후보사이의 구문적 측면의 유사도 측정뿐만이 아니라 의미적 측면의 유사도를 측정하는 방법을 제시하여 최적합 객체 후보군을 추출하도록 하였다.

  • PDF