• Title/Summary/Keyword: 유사거동

Search Result 1,293, Processing Time 0.029 seconds

Experimental Analysis of Effect of Unsteadiness of Horseshoe Vortex on Local Pier Scour (국부교각세굴에서 마제형와의 부정류적 특성에 관한 실험적 해석)

  • Lee, Seung Oh;Kim, Hyung-Jun;Cho, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.169-175
    • /
    • 2008
  • The clear-water scour experiments were conducted to shed light on the unsteadiness of the horseshoe vortex around a bridge pier since the fluctuations of velocity components and unsteadiness of the horseshoe vortex can be considered as one of the main factors on local scour. The characteristics of the flow speed and turbulence around a bridge pier was examined using an Acoustic Doppler Velocimeter (ADV) and the flow visualization with kaolin clay particles upstream of a bridge pier. The outcomes of this study on the turbulence characteristics related with scour mechanism were presented with the quadrant analysis, the integral time scales, and the bed shear stresses before and after scouring, respectively. The bed shear stress before scouring was approximately quadruple times higher than that of the equilibriums state. It implies that the unsteadiness of the horseshoe vortex would play a significant role in the initial development of scour depth. Therefore, the bimodal distribution of flow velocity was identified as one of the mechanical properties of the horseshoe vortex and the unsteadiness of horseshoe vortex can be one of the major characteristics to understand the flow sturucture and local pier scour.

Exploring Delays of The Mega Construction Project: The Case of Korea High Speed Railway (대형 건설사업의 공기지연분석: 경부고속철도 건설사업을 중심으로)

  • Han, Seung Heon;Yun, Sung Min;Lee, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.839-848
    • /
    • 2006
  • Korea has become the 5th country to own and operate the high speed railroad in 2004. However, there were many difficulties until Koreans enjoy the first bullet train service with the average hourly speed of 300km. The high speed railroad requires elevated quality standards differently from the traditional railways. In addition to the technical difficulties, the construction project itself was an unpleasant case with huge delays and cost overruns mainly due to the lack of experiences, deficiency of owner$^{\circ}{\O}$s role, and increase of public resistances triggered by environmental concerns. This paper analyzes the reasons for delays on this mega-project. With respect to the characteristics of the whole project level, it is very complicated/linear project, whose total length is around 412 km with the composition of various sections in the route of the railway which have basically different conditions. For that reason, the analysis is performed in both macro and micro level. First, macroscopic analysis is performed to find critical subdivisions in the railway route that induces the significant delay in the opening due date. Then, microscopic analysis is followed to quantify the causes and effects of delays focused on these critical subdivisions in more detailed way. Finally, this paper provides lessons learned from this project to avoid the decisive delays in performing the similar large-scaled projects.

Analysis of Precipitation Characteristics of Regional Climate Model for Climate Change Impacts on Water Resources (기후변화에 따른 수자원 영향 평가를 위한 Regional Climate Model 강수 계열의 특성 분석)

  • Kwon, Hyun-Han;Kim, Byung-Sik;Kim, Bo-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.525-533
    • /
    • 2008
  • Global circulation models (GCMs) have been used to study impact of climate change on water resources for hydrologic models as inputs. Recently, regional circulation models (RCMs) have been used widely for climate change study, but the RCMs have been rarely used in the climate change impacts on water resources in Korea. Therefore, this study is intended to use a set of climate scenarios derived by RegCM3 RCM ($27km{\times}27km$), which is operated by Korea Meteorological Administration. To begin with, the RCM precipitation data surrounding major rainfall stations are extracted to assess validation of the scenarios in terms of reproducing low frequency behavior. A comprehensive comparison between observation and precipitation scenario is performed through statistical analysis, wavelet transform analysis and EOF analysis. Overall analysis confirmed that the precipitation data driven by RegCM3 shows capabilities in simulating hydrological low frequency behavior and reproducing spatio-temporal patterns. However, it is found that spatio-temporal patterns are slightly biased and amplitudes (variances) from the RCMs precipitation tend to be lower than the observations. Therefore, a bias correction scheme to correct the systematic bias needs to be considered in case the RCMs are applied to water resources assessment under climate change.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4) (MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.950-957
    • /
    • 2023
  • For safe mooring and towing between the ship and port, the equipment must be designed in accordance with the relevant international regulations. However, some small shipyards and engineering companies often do not fully comprehend the core contents. Therefore, the international regulations regarding towing and mooring equipment are reviewed and the bollard and chock are newly developed based on the Mooring Equipment Guideline 4 (MEG4) standards. A bollard is a mooring equipment used to fix a mooring rope to the hull. It has two columns and is mostly used in a figure eight pattern knots under the mooring condition. The chock, which is used to change the mooring rope direction coming into the ship from outside, is manufactured using a casting with curvature. The two mooring equipment are widely used in the stern, bow, and mid-side. Owing to the increase in the size of container vessels and LNG ships, the mooring rope load has increased and the safe working load of the mooring equipment must be revised. This study summarizes and examines the results of the allowable stress method obtained using finite element analysis modelling. To consider the mesh size effect, a reasonable criteria was suggested by referring the existing class guidance. Additionally, the safe working load was verified through nonlinear collapse analysis, and the elastic region against load increments was confirmed. Furthermore, the proposed evaluation method can be used to develop similar equipment in the near future.

Investigating the Influence of Rate Dependency and Axial Force on the Seismic Performance Evaluation of Isolation Bearing (면진받침의 내진성능평가를 위한 실험 시 속도의존성과 수직하중의 영향)

  • Minseok Park;Yunbyeong Chae;Chul-Young Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.22-29
    • /
    • 2023
  • In the evaluation of seismic performance for structural materials and components, the loading rate and axial force can have a significant impact. Due to time-delay effects between input and output displacements, It is difficult to apply high-rate displacement in cyclic tests and hybrid simulations. Additionally, the difficulty of maintaining a consistent vertical load in the presence of lateral displacement has limited fast and real-time tests performed while maintaining a constant vertical load. In this study, slow, fast cyclic tests and real-time hybrid simulations were conducted to investigate the rate dependency and the influence of vertical loads of Isolation Bearing. In the experiment, the FLB System including an Adaptive Time Series (ATS) compensation and a state estimator was constructed for real-time control of displacement and vertical load. It was found that the vertical load from the superstructure and loading rate can have a significant impact on the strength of the seismic isolation bearing and its behavior during an earthquake. When conducting experiments for seismic performance evaluation, they must be implemented to be similar to reality. This study demonstrates the excellent performance of the system built and used for seismic performance evaluation and enables accurate and efficient seismic performance evaluation.

Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters (국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구)

  • Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.