• Title/Summary/Keyword: 유비퀴틴

Search Result 27, Processing Time 0.031 seconds

The Role of Ubiquitin-conjugating Enzymes as Therapeutic Targets in Cancer (암 치료 표적으로써 유비퀴틴 접합 효소 UBE2의 기능)

  • Seon Min Woo;Taeg Kyu Kwon
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.523-529
    • /
    • 2023
  • Ubiquitination is a post-translational modification that is involved in the quality control of proteins and responsible for modulating a variety of cellular physiological processes. Protein ubiquitination and deubiquitination are reversible processes that regulate the stability of target substrates. The ubiquitin proteasome system (UPS) helps regulate tumor-promoting processes, such as DNA repair, cell cycle, apoptosis, metastasis, and angiogenesis. The UPS comprises a combination of ubiquitin, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-ligase enzymes (E3), which complete the degradation of target proteins. Ubiquitin-conjugating enzymes (UBE2s) play an inter-mediate role in the UPS process by moving activated ubiquitin to target proteins through E3 ligases. UBE2s consist of 40 members and are classified according to conserved catalytic ubiquitin-conjugating (UBC) domain-flanking extensions in humans. Since UBE2s have specificity to substrates like E3 ligase, the significance of UBE2 has been accentuated in tumorigenesis. The dysregulation of multiple E2 enzymes and their critical roles in modulating oncogenic signaling pathways have been reported in several types of cancer. The elevation of UBE2 expression is correlated with a worse prognosis in cancer patients. In this review, we summarize the basic functions and regulatory mechanisms of UBE2s and suggest the possibility of their use as therapeutic targets for cancer.

Defensive roles of Sdu1, a PPPDE superfamily member with ubiquitin C-terminal hydrolase activity, against thermal stress in Schizosaccharomyces pombe (카르복시 말단 유비퀴틴 가수분해 효소 활성 보유 PPPDE superfamily member인 Schizosaccharomyces pombe Sdu1의 열 스트레스에 대한 방어적 역할)

  • Han, Hee;Heo, Tae Young;Ryu, In Wang;Kim, Kyunghoon;Lim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.319-328
    • /
    • 2015
  • The $sdu1^+$ gene encodes Sdu1, a PPPDE superfamily member of deubiquitinating enzymes (DUBs) in Schizosaccharomyces pombe. Sdu1 was previously shown to contain an actual ubiquitin C-terminal hydrolase (UCH) activity using the recombinant plasmid pYSTP which harbors the $sdu1^+$ gene. This work was designed to assess a thermotolerant role of Sdu1 against high incubation temperatures. In the temperature-shift experiments, the S. pombe cells harboring pYSTP grew much better after the shifts to $37^{\circ}C$ and $42^{\circ}C$, when compared with the vector control cells. After being shifted to $37^{\circ}C$ and $42^{\circ}C$ for 6 h, the S. pombe cells harboring pYSTP contained lower reactive oxygen species (ROS) levels, compared with the vector control cells. The nitric oxide (NO) levels of the S. pombe cells harboring pYSTP were slightly lower than those of the vector control cells in the absence or presence of the temperature shifting. The total glutathione (GSH) levels of the S. pombe cells harboring pYSTP were significantly higher than those of the vector control cells. Total superoxide dismutase (SOD) and GSH peroxidase activities were also higher in the S. pombe cells harboring pYSTP after the temperature shifts than in the vector control cells. In brief, the S. pombe Sdu1 plays a thermotolerant role against high incubation temperature through the down-regulation of ROS and NO and the up-regulation of total GSH content, total SOD and GSH peroxidase activities.

Expression and Purification of Recombinant Human Epidermal Growth Factor Using Fusion Partners in Escherichia coli (융합 파트너를 이용한 인간 상피세포성장인자의 재조합 대장균에서 발현과 정제 연구)

  • Sung, Keehyun;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.711-717
    • /
    • 2018
  • Human epidermal growth factor (hEGF) can stimulate the division of various cell types and has potential clinical applications. Since the protein contains three intra-molecular disulfide bonds, the high expression of active hEGF in Escherichia coli has not been well researched, We fused the hEGF gene with a small ubiquitin-related modifier gene (SUMO) by synthesizing an artificial SUMO-hEGF fusion gene that was highly expressed in E. coli (DE3) strain. The optimal expression level of the soluble fusion protein, SUMO-hEGF with IPTG (Isopropyl-${\beta}$-D-Thiogalactopyranoside), was up to 38.9% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease to obtain the native hEGF, which was further purified by Ni-NTA affinity chromatography. The result of the reverse-phase HPLC showed that the purity of the recombinant cleaved hEGF was greater than 98%.

Development of Purification Process of Recombinant Human Vascular Endotherial Growth Factor (VEGF) using Fusion Protein (융합 단백질을 이용한 재조합 인간 혈관내피세포 성장인자의 정제공정 개발)

  • Sung, Keehyun;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.369-378
    • /
    • 2017
  • Vascular endotherial growth factor (VEGF) is a potent mitogen that stimulates vascular permeability and angiogenesis and has a potential in therapeutic applications. An industrial production method that provides high yield as well as purity is needed. Researches for various factors of mild solubilization with combination of ubiquitin fusion protein to increase solubility were carried out as well as by changing pH and denaturant concentration. Usage of pET28-a bacteral expression vector in BL21 (DE3) host cell was capable of producing approximately 14 g/L VEGF fusion protein in 20L fermentor. A purification process consisting of four chromatography steps including refolding and digestion with UBP1 resulted in mild solublization under the conditions of 2M urea and pH 10.0 due to ubiquitin fusion tag protein that increases in solubility of target protein VEGF. High yield of refolding and dimerization could be obtained between two step Ni-affinity chromatography. Multimeric and misfolded proteins and endotoxin were removed by DEAE anion exchange chromatography. Final monomers were removed from dimers by gel filtration chromatography. Characterization analysis of purified dimeric VEGF was performed using SDS-PAGE and RP-HPLC with a purity of 97%.

Contribution of Hydrophobic Interactions to HubWA Folding Reaction (소수성 상호작용이 HubWA 단백질의 폴딩 반응에 끼치는 영향)

  • Park, Soon-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • The role of hydrophobic residues on protein folding reaction was studied by folding kinetics measurements in conjunction with protein engineering. The HubWA, which was derived from human ubiquitin by mutating the residues at 45 (Phe to Trp) and 26 (Val to Ala), was used as a mutational background. Fourteen hydrophobic residues were mutated to alanine. Among fourteen variants generated, only four variant proteins (V5A, I13A, V17A, and I36A) were suitable for folding study. The folding kinetics of these variants was measured by stopped-flow fluorescence spectroscopy. The folding kinetics of HubWA and V17A was observed to follow a three-state on-pathway mechanism. On the other hand, folding kinetics of V5A, I13A, and I36A was observed to follow a two-state mechanism. Based on these observations, transition of protein folding reaction from collision-diffusion mechanism to nucleation-condensation mechanism was discussed.

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Parkin Interacts with the PDZ Domain of Multi-PDZ Domain Protein MUPP1 (Parkin과 Multi-PDZ Domain Protein (MUPP1) 단백질 간의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.820-826
    • /
    • 2014
  • The localization to specific subcellular sites and the regulation of cell surface receptors and channels are crucial for proper functioning. Postsynaptic density-95/Disks large/Zonula occludens-1 (PDZ)-domain is involved in recognition of and interaction between various proteins, by which the localization and the regulation are mediated. Multi-PDZ domain protein 1 (MUPP1) contains 13 PDZ domains. MUPP1 serves a scaffolding function for structure proteins and signaling proteins, but the mechanism how MUPP1 is stabilized and signalized has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and Parkin. Parkin is an E3 ubiquitin ligase. Loss-of-function mutations of Parkin gene are known to cause an autosomal recessive juvenile parkinsonism. Parkin bound to the $12^{th}$ PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of Parkin has a type II PDZ-association motif, which was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, Parkin co-localized with MUPP1. When co-expressed with ubiquitin in HEK-293T cells, MUPP1 has been strongly ubiquitinated by Parkin. These findings collectively suggest that MUPP1 is a novel substrate of Parkin and its function or stability could be modulated by Parkin-mediated ubiquitination.

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

Potential Involvement of p62, a Phosphotyrosine-independent Ligand of SH2 Domain of $p56^{lck}$, on UV-induced Apoptosis in Jurkat T-cell Line ($p56^{lck}$ SH2 domain 결합 단백질 p62가 Jurkat T-세포주의 세포예정사에 미치는 영향)

  • 정인실
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 1998
  • p62 is a novel cytoplsmic protein that binds to SH2 domain of p56$^{lck}$, lymphocyte-specific protein tyrosine kinase, and the expression of p62 was observed in most tissues. In addition p62 interacts with various proteins including ubiquitin and atypical PKC isoform, indicating its diverse biological role in different tissues. However, little is known about functional connection between p62 and its binding proteins. In the present study, a novel cellular protein, p62 has been shown to bind to 14-3-3 $\tau$ isoform that is specific for T cells. Moreover, overexpression of p62 in T cells caused to delay onset of UV-induced apoptosis characterized by DNA fragmentation and breakdown of poly (ADP-ribose) polymerase (PARP). Lately, 14-3-3 proteins have been shown to mediate survival signal via interacting proapoptotic Bad protein in the Iymphocyte. These results suggested the presence of p62-mediated regulatory mechanism during apoptosis in T cells, in which activation-induced apoptotic signal could be interfered by p62 and 14-3-3 protein.n.

  • PDF