• Title/Summary/Keyword: 유비쿼터스 서비스 평가

Search Result 154, Processing Time 0.023 seconds

A Study on the Applicability of IoT for Container Terminal (컨테이너 터미널의 사물인터넷(IoT) 적용가능성에 관한 연구)

  • Jeon, Sang-Hyeon;Kang, Dal-Won;Min, Se-Hong;Kim, Si-Hyun
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.2
    • /
    • pp.1-18
    • /
    • 2020
  • The Internet of things (IoT) has been applied to a variety of industrial uses such as public service sectors, medical industries, automotive industries, and so on. Led by smart cities, this is typical. However, from a logistics perspective, the level of application is insufficient. This study examines the applicability of IoT-related technology in a container terminal, an object of the present invention, to derive an applicable plan. Analytic network process (ANP) analysis reveals the following results for IoT applications in container terminals: operating systems (26.7%), safety/environmental/security systems (26.4%), equipment maintenance systems (25.3%), and facility maintenance systems (21.6 %). The second ANP analysis reveals the following results: Economy (40.2%), productivity (21.1%), service level (19.5%), and utilizing technology level (19.2%). The application or standard of evaluation is important when applying IoT technology to container terminals; however, it is not concentrated in a certain area. It is desirable to build each container system with linkage and efficiency from a macroscopic view.

A Research of LEACH Protocol improved Mobility and Connectivity on WSN using Feature of AOMDV and Vibration Sensor (AOMDV의 특성과 진동 센서를 적용한 이동성과 연결성이 개선된 WSN용 LEACH 프로토콜 연구)

  • Lee, Yang-Min;Won, Joon-We;Cha, Mi-Yang;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.167-178
    • /
    • 2011
  • As the growth of ubiquitous services, various types of ad hoc networks have emerged. In particular, wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are widely known ad hoc networks, but there are also other kinds of wireless ad hoc networks in which the characteristics of the aforementioned two network types are mixed together. This paper proposes a variant of the Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol modified to be suitable in such a combined network environment. That is, the proposed routing protocol provides node detection and route discovery/maintenance in a network with a large number of mobile sensor nodes, while preserving node mobility, network connectivity, and energy efficiency. The proposed routing protocol is implemented with a multi-hop multi-path algorithm, a topology reconfiguration technique using node movement estimation and vibration sensors, and an efficient path selection and data transmission technique for a great many moving nodes. In the experiments, the performance of the proposed protocol is demonstrated by comparing it to the conventional LEACH protocol.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Personalized Exhibition Booth Recommendation Methodology Using Sequential Association Rule (순차 연관 규칙을 이용한 개인화된 전시 부스 추천 방법)

  • Moon, Hyun-Sil;Jung, Min-Kyu;Kim, Jae-Kyeong;Kim, Hyea-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.195-211
    • /
    • 2010
  • An exhibition is defined as market events for specific duration to present exhibitors' main product range to either business or private visitors, and it also plays a key role as effective marketing channels. Especially, as the effect of the opinions of the visitors after the exhibition impacts directly on sales or the image of companies, exhibition organizers must consider various needs of visitors. To meet needs of visitors, ubiquitous technologies have been applied in some exhibitions. However, despite of the development of the ubiquitous technologies, their services cannot always reflect visitors' preferences as they only generate information when visitors request. As a result, they have reached their limit to meet needs of visitors, which consequently might lead them to loss of marketing opportunity. Recommendation systems can be the right type to overcome these limitations. They can recommend the booths to coincide with visitors' preferences, so that they help visitors who are in difficulty for choices in exhibition environment. One of the most successful and widely used technologies for building recommender systems is called Collaborative Filtering. Traditional recommender systems, however, only use neighbors' evaluations or behaviors for a personalized prediction. Therefore, they can not reflect visitors' dynamic preference, and also lack of accuracy in exhibition environment. Although there is much useful information to infer visitors' preference in ubiquitous environment (e.g., visitors' current location, booth visit path, and so on), they use only limited information for recommendation. In this study, we propose a booth recommendation methodology using Sequential Association Rule which considers the sequence of visiting. Recent studies of Sequential Association Rule use the constraints to improve the performance. However, since traditional Sequential Association Rule considers the whole rules to recommendation, they have a scalability problem when they are adapted to a large exhibition scale. To solve this problem, our methodology composes the confidence database before recommendation process. To compose the confidence database, we first search preceding rules which have the frequency above threshold. Next, we compute the confidences of each preceding rules to each booth which is not contained in preceding rules. Therefore, the confidence database has two kinds of information which are preceding rules and their confidence to each booth. In recommendation process, we just generate preceding rules of the target visitors based on the records of the visits, and recommend booths according to the confidence database. Throughout these steps, we expect reduction of time spent on recommendation process. To evaluate proposed methodology, we use real booth visit records which are collected by RFID technology in IT exhibition. Booth visit records also contain the visit sequence of each visitor. We compare the performance of proposed methodology with traditional Collaborative Filtering system. As a result, our proposed methodology generally shows higher performance than traditional Collaborative Filtering. We can also see some features of it in experimental results. First, it shows the highest performance at one booth recommendation. It detects preceding rules with some portions of visitors. Therefore, if there is a visitor who moved with very a different pattern compared to the whole visitors, it cannot give a correct recommendation for him/her even though we increase the number of recommendation. Trained by the whole visitors, it cannot correctly give recommendation to visitors who have a unique path. Second, the performance of general recommendation systems increase as time expands. However, our methodology shows higher performance with limited information like one or two time periods. Therefore, not only can it recommend even if there is not much information of the target visitors' booth visit records, but also it uses only small amount of information in recommendation process. We expect that it can give real?time recommendations in exhibition environment. Overall, our methodology shows higher performance ability than traditional Collaborative Filtering systems, we expect it could be applied in booth recommendation system to satisfy visitors in exhibition environment.