• Title/Summary/Keyword: 유막 두께

Search Result 72, Processing Time 0.019 seconds

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

Effects of Evaporation on the Weathering Rate and Chemical Composition of Iranian Heavy Crude Oil (이란산 원유의 증발에 따른 풍화율 및 화학적 성상 변화)

  • Kim, Beom;Kim, Gi-Beum;Sim, Won-Joon;Yim, Un-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.238-246
    • /
    • 2012
  • Once oil is spilled into marine environment, it experiences various weathering processes among which evaporation is the most dominant process in the initial stage of weathering. This study aimed to elucidate the effects of evaporation on the physicochemical properties of spilled oil using standardized laboratory experiments. Laboratory evaporation process was successfully reproduced using controlled rotary evaporation method. In case of Iranian Heavy crude (IHC), evaporation rate after 48 hours was $29.3{\pm}0.4%$ (n=40, p<0.001). Evaporation was simulated using ADIOS2 weathering model and the result was in agreement with laboratory experiment. Chemical composition changes of petroleum hydrocarbons including alkanes, polycyclic aromatic hydrocarbons (PAHs) and biomarkers by evaporation rate were also analyzed. As oil evaporated, low molecular weight alkanes and PAHs decreased, while biomakers showed conservative characteristics. Among biomarkers, $17{\alpha}(H)$, $21{\beta}(H)$-hopane was used for calculation of weathering rates, which matched with evaporative mass losses. Weathering rate calculation using hopane showed that stranded oils of weathering stage I (28.9%) and mesocosm oil weathering experiment till 5 days (26.5%) were mainly affected by evaporation process.