• Title/Summary/Keyword: 유리 섬유강화

Search Result 318, Processing Time 0.021 seconds

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF

Effect of location of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture (광중합형 레진에 함침시킨 유리섬유의 위치가 상악 총의치의 파절강도와 파절양상에 미치는 영향)

  • Yoo, Hyun-Sang;Sung, Su-Jin;Jo, Jae-Young;Lee, Do-Chan;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • Purpose: This study evaluated the effect of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture. Materials and methods: Maxillary acrylic resin complete dentures reinforced with glass fiber pre-impregnated with light-curing resin (SES MESH, INNO Dental Co., Yeoncheongun, Korea) and without reinforcement were tested. The reinforcing material was embedded in the denture base resin and placed different regions (Control, without reinforcement; Group A, center of anterior ridge; Group B, rugae area; Group C, center of palate; Group D, full coverage of denture base). The fracture strength and fracture modes of a maxillary complete denture were tested using Instron test machine (Instron Co., Canton, MA, USA) at a 5.0 mm/min crosshead speed. The flexure load was applied to center of denture with a 20 mm diameter ball attachment. When fracture occurred, the fracture mode was classified based on fracture lines. The data were analyzed with one-way ANOVA at the significance level of 0.05. Results: There were non-significant differences (P>.05) in the fracture strength among test groups. Group A showed anteroposterior fracture and posterior fracture mainly, group B, C and control group showed partial fracture on center area mostly. Most specimen of group D showed posterior fracture. Conclusion: The location and presence of the fiber reinforcement did not affect the fracture strength of maxillary complete denture. However, reinforcing acrylic resin denture with glass fiber has a tendency to suppress the crack.

Effect of Temperature on Tensile Fracture Behavior of Glass Fiber Polypropylene Composites (온도변화에 따른 GF/PP복합재료의 인장파괴거동)

  • 고성위;엄윤성;허경환;김엄기;김형진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.240-245
    • /
    • 2001
  • The tensile strength and failure mechanisms of glass fiber polypropylene (GF/PP) composites are investigated in the temperature range from ambient to 8$0^{\circ}C$. The tensile strength increases as fiber volume fraction ratio increase. The tensile strength shows a maximum at ambient temperature, and it tens to decrease as temperature goes up. Major failure mechanisms of GF/PP composites can be classified as fiber matrix debonding, fiber pull-out, delamination and matrix deformation.

  • PDF

DGEBA-MDA-SN-Hydroxyl Group System and Composites : 2. Fracture Energy of Fiber Reinforced Composites (DGEBA-MDA-SN-Hydroxyl Group System의 합성 및 복합재료 제조 : 2. 섬유강화 복합재료의 파괴에너지)

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.737-742
    • /
    • 1994
  • The fracture energy of glass fiber/carbon fiber/epoxy resin hybrid composite system was investigated in the aspect of fracture mechanism. Epoxy resin matrix was DGEBA-MDA-SN-HQ system. On the interface of glass fiber and matrix, post debone friction energy provided a major contribution to the fracture energy, and debonding energy and pull-out energy were of the similar value. In the case of fracture on the interface of carbon fiber and matrix, pull-out energy was the major contributor.

  • PDF

Recycle of the Glass fiber Obtained from the Roving Cloth of FRP II: Study for the Physical Properties of fiber-reinforced Concrete (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 II: 섬유강화 콘크리트의 물성에 관한 연구)

  • Kim, Yong-Seop;Lee, Seung-Hee;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.46-49
    • /
    • 2008
  • Recycling glass fiber, 'F-fiber,' was obtained by the separation of the roving layer from waste FRP and the concrete products or structures were considered for its application. Experiment was carried out for the bending strength of aggregate (2.45 of cement) by weight and F-fiber (density of 1.45, volume ratio to all of the aggregate and the cement). Whereas the specimen containing 1% F-fiber showed the bending strength 23% higher than that without F-fiber after curing far 28 days, the one with 0.5% F-fiber did not give any change. It could be found, therefore, that the minimum mixing amount should be larger than 0.5% fur the strength reinforcement. One of the reinforcing concrete product, bench flume, containing 1% F-fiber showed 21% increment of bending strength In contrast to that without F-fiber.

  • PDF

Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites (유리섬유 강화 폴리올레핀케톤 복합재료의 제조 및 특성에 대한 연구)

  • Cho, Hae-Souk;Chung, Jae-Seung;Baek, Seung-Jo;Choi, Won Jae;Kim, Jin-joo;Yoon, Sung Kyun;Lee, Jong-Chan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.339-343
    • /
    • 2012
  • Poly(olefin ketone) terpolymer having excellent mechanical properties was synthesized and composite materials of poly(olefin ketone) containing polyurethane/amino silane functionalized glass fibers were prepared. The compatibilities between the functionalized glass fiber and the polymer were characterized by observing the fracture surfaces of the composites using scanning electron microscopy (SEM). Mechanical properties of composites with different contents, diameters, lengths, and binders of glass fibers were also studied using universal testing machine (UTM). The introduction of suitably functionalized glass fiber into the poly(olefin ketone) produces composite materials having excellent mechanical properties and they are very promising alternative materials for the engineering plastic applications.

Mechanical characteristics of laminated composites using hybrid prepreg (하이브리드 프리프레그를 사용한 적층복합재료의 기계적 특성)

  • 정성교;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.189.1-192
    • /
    • 1999
  • Mechanical characteristics of composite laminates with carbon tissue and glass scrim are evaluated in this paper. Composite laminates in USN125 group are made by inserting carbon tissue and glass scrim between layers. Consequently it was shown that mechanical characteristics of carbon fiber reinforced composite materials were improved by inserting carbon tissue.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.