The freedom of assembly is the fundamental freedoms guaranteed by the Constitution. However, as far as our reality is concerned, the freedom of assembly is guaranteed only when it is under the control of the police, and otherwise it is perceived as an object to be suppressed. Police say even that they will not tolerate even a small illegal law while referring to the "broken window theory". Therefore, regardless of the peaceful nature of the rally, it is too obsessed with 'compliance'. This attitude is causing the citizens who participated in the assembly to be put to the object to be suppressed. This paper analyzes the requirements and current status of police force, focusing on the vehicle-wall-blocking and water cannon as a means of using the police force, which is a recent problem, and suggests ways to improve it. First of all, the installation of the wall cuts off the essential communication function of the assembly by separating the meeting place from the object of protest. Thus, despite the warning for prevention in the face of illegal acts, other than installing a barrier, it should be allowed only in the 'urgent case where there is a risk of causing damage to the life, body or property of the person'. Without this urgency, the vehicle-wall-blocking should not be allowed to be proactive as well as preventive. Secondly, the water cannon is a police force that is likely to harm people's life and body. Therefore, aiming shots, which could pose a significant risk to the human body, should in principle be prohibited. However, considering its risk, it should be supplementary used only when there is no other alternative, only when the direct risk to the legal interest of the other person or the order of public well-being is 'obvious'. In addition, as for the use standard of such a thing, it is necessary to be specified by law.
Journal of Korean Tunnelling and Underground Space Association
/
v.16
no.2
/
pp.249-260
/
2014
When a train enters the tunnel at high speed, the pressure wave occurs. When this pressure wave reaches at the exit of tunnel, some are either emitted to the outside or reflected in tunnel by the form of expansion wave. The wave emitted to the outside forms the impulsive pressure wave. This wave is called 'Micro Pressure Wave'. The micro pressure wave generates noise and vibration around a exit portal of tunnel. When it becomes worse, it causes anxiety for residents and damage to windows. Thus, it requires a counterplan and prediction about the micro pressure wave for high speed railway construction. In this paper, the effects of train head nose and tunnel portal shape were investigated by model test, measurement for the micro pressure wave at the operating tunnel as well as numerical analysis for the gradient of pressure wave in the tunnel. As results, a method for predicting the intensity of the micro pressure wave is suggested and then the intensity of the micro pressure wave is analyzed by the tunnel length and the cross-sectional area.
Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
Transactions of the Korean Society of Mechanical Engineers B
/
v.35
no.2
/
pp.161-168
/
2011
The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.2
/
pp.227-235
/
2018
In this study, we developed a relational formula for observing high - resolution rainfall using vehicle rain sensor. The vehicle rain sensor consists of eight channels. Each channel generates a sensor signal by detecting the amount of rainfall on the windshield of the vehicle when rainfall occurs. The higher the rainfall, the lower the sensor signal is. Using these characteristics of the sensor signal generated by the rain sensor, we developed a relational expression. In order to generate specific rainfall, an artificial rainfall generator was constructed and the change of the sensor signal according to the variation of the rainfall amount in the artificial rainfall generator was analyzed. Among them, the optimal sensor channel which reflects various rainfall amounts through the sensitivity analysis was selected. The sensor signal was generated in 5 minutes using the selected channel and the representative values of the generated 5 - minute sensor signals were set as the average, 25th, 50th, and 75th quartiles. The calculated rainfall values were applied to the actual rainfall data using the constructed relational equation and the calculated rainfall amount was compared with the rainfall values observed at the rainfall station. Although the reliability of the relational expression was somewhat lower than that of the data of the verification result data, it was judged that the experimental data of the residual range was insufficient. The rainfall value was calculated by applying the developed relation to the actual rainfall, and compared with the rainfall value generated by the ground rainfall observation instrument observed at the same time to verify the reliability. As a result, the rain sensor showed a fine rainfall of less than 0.5 mm And the average observation error was 0.36mm.
Lee Young-Soon;Kang Sun-Jung;Choi Bong-Sun;Kim Hyong-Shuk
Journal of the Korean Institute of Gas
/
v.2
no.2
/
pp.1-11
/
1998
A quantitative risk assessment and consequence analysis for PBL(Poly Butadiene Latex) reaction processes were performed. As a result of the Quantitative risk assessment, for the accident probability of PBL reactors causing a reaction runaway, was calculated as $9.197{\times}10^{-5}/yr$ The most important factor that affected the accident probability of PBL reactor was the relief device. When the reactor exploded, peak overpressure at the target point was $5.066{\times}10^5(Pa)$ and the range of effects windows to be broken occurred in almost all of the factory areas. The maximum radius of effect was 27m, in which workers could be die by the direct for eardrum damage was calculated at 77m. When the PBL reactor exploded, the extent of structural damage to buildings was calculated from the center of the explosion to a range of 52m. The results of the study's assessment have provided a direction for facility's improvement as well as effective safety investment.
A study on the vented gas explosion characteristics were carried out with the liquified petroleum gas(LPG) which is used in domestics and industries fuel. To evaluate a damage by gas explosion and to predict a explosion hazards, a series of experiment have been performed in the regular hexahedron vessel of 270${\iota}$. A side of the vessel was made to setting a polyester diaphragm which was ruptured by explosion to simulate an accidental explosion which ruptured the window by explosion. Experimental parameters were LPG concentration, ignition position, venting area, a strength of diaphragm which was ruptured and distances from venting, Experimental results showed that vented gas explosion pressure was more affected by the diaphragm strength than the gas concentration, and the vented gas explosion pressure and blast wave pressure was increased with decreasing the venting area and increasing the strength of diaphragm. In this research we can find that a damage by vented explosion at the outside can be larger than the inside by blast wave pressure near the venting.
There exists high hazard when transporting LPG as well as using, storing, and producing. For small scale LPG consumer, retailers deliver LPG to customers via a truck loading many LPG cylinders. Suppose there occurred a accident during LPG cylinder transfer, this could result in serious damages to the life and properties in the near or neighbor of the accident spot. In this regard, we made a quantitative risk analysis to estimate the possible damages and the probability through the identification of accidents causes and the simulation of the possible scenario. In this study, we made the Excel & Visual Basic computer program to perform quantitative LPG accident analysis. The simulation showed the following results. In case of UVCE(Unconfined Vapor Cloud Explosion), the effect within l0m of the accident spot showed very severe structural damages and even the accident can break the window glasses of the area of 150 m apart from accident spot. In case of TNT corresponding probit analysis, after 10 minutes LPG leaking, $75\%$ window glasses of 40 m distance was expected to be broken. And $16\%$ frames of 20m distance, $10\%$ frames of 40m distance was expected to be collapsed.
In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture
This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.4
/
pp.555-562
/
2022
This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.