• Title/Summary/Keyword: 유리섬유 강화 복합재료

Search Result 183, Processing Time 0.023 seconds

The Stress-strain Relationship of Glass Fiber Reinforced Thermoplastic Composite (유리섬유 강화 열가소성 복합재료의 응력-변형률 관계)

  • 이중희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.206-214
    • /
    • 1996
  • Because of the wide variety of the composite materials, inherent variability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Large strain behavior under uniaxial tension is characterized over a range of temperatures and strain rates, and a modified simple linear viscoelastic model is fit to the observed data. Of particular importance is the strain rate and temperature dependence of these composites, and it is the primary focus of this study. The strain rate and temperature dependence is then used to predict limiting tensile strains, based on Marciniak imperfection theory. Excellent correlation was obtained between model and experiment and the results are summarized in maps of forming limit as a function of strain rate and temperature.

  • PDF

A Study on the bending process of glass fiber reinforced thermoplastic composite (유리섬유 강화 열가소성 복합재료의 굽힘성에 대한 연구)

  • 남궁천;김동석;이중희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.513-517
    • /
    • 1997
  • Glass fiber reinforced thermoplastic composite materials have considerable promise for increased use in low cost high volum applications because of the potential for processing by solid phase forming. However, the forming characteristics of these materials have not been well known. The primary focus of this research is the investigation of the bendability of these composites and spring-back phenomena in pure bending. The materials tested contained 10, 35, and 40 percent by weight of randomly oriented glass fiber in a polypropylene matrix. The bending tests were performed at temperatures ranging form 75 ".deg. c" to 150 ".deg. c" and at punch speeds of 2.54 mm/sec and 0.0254 mm/sec. The measured bendability and spring back angle in pure bending werw compared with the predictions based on the simple analyical models. Goog agreement between experimental and analytical results was observed.esults was observed.

  • PDF

Study on the Improvement of Epoxy Property for Aluminum Conductor Composite Core (복합재료 중심인장선용 에폭시 물성 개선 연구)

  • Heo, Seok-Bong;Kang, Junyoung;Youn, Young-Gil;Goh, Munju;Kim, Nam Hoon
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.349-354
    • /
    • 2019
  • The Aluminum conductor composite core consists of fast-curing thermosetting epoxy used as reinforcements and carbon fiber and glass fiber used as matrix. In this study, we have investigated fast curing epoxy cured products used for composite core(Aluminum Conductor Composite Core, ACCC). Tetrafunctional epoxy(PA 806) was used as a multifunctional epoxy, along with two kinds of curing agents, MNAn(5-Methyl-5-norbornene-2,3-dicarboxylic anhydride) and HHPA(Hexahydrophthalic Anhydride), to make an epoxy cured product and their properties were evaluated. Optimum conditions are confirmed by varying the content of curing accelerator in the selected epoxy and curing agent.

Glass Fiber Composite Material with Polyurethane Toughener in Unsaturated Polyester Resin (UPR) (불포화 폴리에스터 (UPR)에 폴리우레탄을 첨가하여 강인성을 부여한 유리섬유 복합소재)

  • Baek, Chang Wan;Jang, Tae Woo;Kim, Taehee;Kim, Hye Jin;Kim, Hyeon-Gook;Kim, Changyoon;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • Unsaturated Polyester Resin (UPR) is in general used as a resin to prepare for composite materials with reinforcing materials such as glass fibers. UPR, a thermosetting resin, is used in industry to prepare for sheet molding compound (SMC) molding prepreg that has excellent productivity and is advantageous for mass production among various molding methods of composite materials. The fiber-reinforced composite material using UPR as a matrix material is light and has the advantage of excellent physical properties, but it is weak against impact and is fragile. Four types of polyurethane were synthesized and added to UPR resin to overcome the shortcomings.

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues (종류가 다른 부직포가 삽입된 하이브리드 복합재료의 모드 II 층간파괴인성)

  • Jeong, Jong-Seol;Cheong, Seong-Kyun
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2013
  • The mode II interlaminar fracture toughness was evaluated for CFRP laminates with different types of nonwoven tissues and the source of increased mode II interlaminar fracture toughness was examined by SEM analysis in this paper. The interlaminar fracture toughness in mode II is obtained by an end notched flexure test. The experiment is performed using three types of non-woven tissues: 8 $g/m^2$ of carbon tissue, 10 $g/m^2$ of glass tissue, and 8 $g/m^2$ of polyester tissue. On the basis of the specimen with no non-woven tissue, interlaminar fracture toughness on mode II at specimens inserted with non-woven carbon and glass tissues and polyester tissues increases as much as 166.5% and 137.1% and 157.4% respectively. The results show that mode II interlaminar fracture toughness of CFRP laminates inserted with nonwoven tissues increased due to the fiber bridging, fiber breakage, and hackle etc. by SEM analysis.

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Electromagnetic Wave Characteristics of $\textrm{Al}_2\textrm{O}_3$ Woven-Fabric Composites ($\textrm{Al}_2\textrm{O}_3$ Woven-fabric 복합재료의 전자파특성)

  • ;;Kagawa Yutaka
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.139-142
    • /
    • 2002
  • Recently, GFRP is well known as a structural material for the radome of aircraft. In this paper, we have observed the reflectivity of electromagnetic waves on GFRP reinforced with $\textrm{Al}_2\textrm{O}_3$ woven fabric. The result of the experiment has revealed that the reflectivity of $\textrm{Al}_2\textrm{O}_3$/GFRP composites is remarkably reduced compared with that of GFRP. And it also shows that the electromagnetic wave reflections are greatly influenced by the number of $\textrm{Al}_2\textrm{O}_3$ plies in a specific frequency band. These results are expected to be utilized for the technique of manufacturing a low-reflectivity composite structure.

  • PDF

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

Developement of New Glass Fiber Reinforced Composite Insulating Material by Reactive Plasma Surface Treatment(II) (반응성 플라즈마 표면처리기법을 도입한 새로운 유리섬유 강화 복합재료의 개발 및 물성연구(II))

  • 박정후;조정수;성문열;김두환;김규섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.216-219
    • /
    • 1995
  • One of the principal problems encountered in the use of glass fiber reinforced Plastic composites(GFRP) is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to develope new process to overcome the disadvantage of chemical agent, we have studied the effect of reactive plasma glass surface treatment on the electrical and mechanical properties of glass fiber reinforced epoxy composites. It is found that the electrical and mechanical characteristics of the composites treated with plasma is improved especially in the dielectric strength by 20% and tensile strength by 15%, whereas the tan $\delta$ is decreased significantly.

  • PDF