• Title/Summary/Keyword: 유동-구조 연성

Search Result 87, Processing Time 0.023 seconds

Analysis and Suppression Plan for Structure and Flow induced Noise in a Small Refrigeration System (소형 냉동시스템 소음의 구조와 유동 연성 분석과 저감 방안)

  • Kim, Soo-Hyun;Lee, Dong-Yeon;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4129-4136
    • /
    • 2010
  • This paper addresses how to reduce or redesign uncomfortable sound from small refrigerator by modifying some structures in mechanical components or operating conditions. After performing vibration analysis on each component and then sound analysis are carried out. From stepped designed experiments, we could acquire some important results that structure and flow induced vibration assumed to be a major cause to noise level and frequencies. Modifying some mechanical structure and operating conditions, uncomfortable starting noise and beating sound are suppressed. Machinery room located in refrigerator's backside is investigated for vibration and noise suppression, and some ideas for more improvement are suggested.

Effect of the Inner Material and Pipe Geometry on the Flow and Induced Radiated Noise (파이프 내 흡음재 및 형상에 따른 유동 및 방사소음에 대한 수치해석적 연구)

  • Lee, Su-Jeong;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • Noise and vibration, which occur in a pipe, are usually caused by the interaction between the turbulent flow and nearby wall. Although it can be estimated by a simple case of expanded pipes having complex turbulent flow, the radiated noise is highly dependent upon the size, shape, and thickness of the given model. In addition, the radiated noise propagates and has serious interference and destabilization effects on the surrounding systems, which can lead to fatigue fracture and failure. This study took advantage of the variety of commercial programs, such as FLUENT (flow solver), NASTRAN (dynamic motion solver of complex structures) and VIRTUAL LAB (radiated noise solver) based on the boundary element method (BEM), to understand the underlying physics of flow noise. The expanded pipe has separation and a high pressure drop because of the abrupt change in the cross-section. Based on the radiated noise calculations, the noise level was reduced to around 20 dB in the range of 100-500 Hz.

A Fluid Analysis of a Container Crane using the Computation Fluid Dynamics (전산유동해석을 이용한 컨테이너 크레인의 유동 분석)

  • Kwon Soon-Kyu;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.349-354
    • /
    • 2006
  • This study analyzed the fluid state around a container crone according to a wind direction when a wind load was applied to a container crone. The container crane for this research is a model of a 50-ton class used broadly in the current ports. The dimension of an external fluid field set up diameter, 300m, height, 200m. This study considered the change of a wind velocity according to an altitude in a criterion of a wind velocity, 50m/s, applying a power series law. An incident angle applied to an interval of 30 degrees in $0^{\circ}{\sim}180^{\circ}$ and this study carried out a computation fluid dynamics using a CFX-10. In this study, we indicate the wind pressure according to the height and section figure of each member. In addition, we suggest the wind pressure accordint to a wind direction. And we will analyze the structure stability of a container crone from the fluid-ductile analysis in the next study.

  • PDF

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Lightweight Design of a Main Starting Air Valve through FSI Analysis (구조연성해석을 통한 메인스타팅 에어밸브의 경량화설계)

  • Lee, Kwon-Hee;Jang, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5371-5376
    • /
    • 2013
  • The role of a main starting air valve is to supply compressed air to the diesel engine for starting the stopped diesel engine of a ship and cut off the air during normal operation. In this study, the main starting air valve with 80mm size was designed based on the developed valve with 50mm size. The concept design of the 80A main starting air valve was completed by using CATIA. Then, fluid analysis was performed to investigate the flow characteristics such as pressure and velocity distribution. Sequentially, structural analysis using FSI was performed. In this study, ANSYS CFX and ANSYS Workbench are utilized. The heavy weight of the body can deteriorate the strength performance of neighbor elements, leading to undesirable effect on flow characteristics. Thus, in this research, a lightweight design of the body was suggested satisfying strength requirement. The weight of the suggested design was reduced by 7kg, and the strength satisfied its requirement.

Analysis method on Structural Safety Evaluation of Butterfly Valve of Piping for LNG carrier (LNG 선박용 배관에 사용되는 Butterfly Valve의 구조 안정성 평가에 관한 해석 기법)

  • Park, Young-Chul;Park, Han-Seok;Kim, Si-Pom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.76-81
    • /
    • 2008
  • A cryogenic butterfly valve is used to transfer the liquefied natural gas (LNG) which temperature is $-162^{\circ}C$. This valve is core part in the piping system using LNG. This paper performed coupling analysis using FEM to evaluate safety of cryogenic butterfly valve. Flow analysis is calculated numerically the CAE and CFD methods are useful to predict the thermal matter and the inner flow field of the valve. Thermal analysis and structural analysis used ANSYS Workbench.

  • PDF

Analytical Study on Inner Flow and Structural Stiffness in Vane Type of Vacuum Pump (베인형 진공펌프의 내부유동과 구조 강성에 관한 해석적 연구)

  • Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.201-206
    • /
    • 2017
  • In the study, the inner flow characteristics were analyzed by modifying the inner design parameter of the vane-type vacuum pump. The effect of pressure generated by the inner flow of pump on the rotor and vane was analyzed. The design parameter was analyzed using the angle variation of tilting and rotation of the vane. MRF was used for the analysis conducted using a virtual condition where the rotor and vane are rotated. The pressure gained from the load of the rotor and vane in the flow analysis is used for the structure analysis. Based on the results, the effect of variable vane design was revealed in structural strength. The effect of centrifugal and friction force generated during pump operation on structural strength was also analyzed.

The Structural Analysis of Three-Way Catalyst Substrate using Coupled Thermal-Fluid-Structural Analysis (열유동구조연성해석을 이용한 삼원촉매담체의 구조 해석)

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3035-3043
    • /
    • 2015
  • This study evaluates the thermal structural safety of the three-way catalyst(TWC) substrate for domestic passenger cars. Thermal-fluid boundary conditions on the TWC substrate were determined by D-optimal DOE. The thermal stresses on the TWC substrate were calculated by the temperature distribution obtained from the CFD results. The safety factors of the TWC substrate were determined by statistical strength and stress distributions and estimated to be 0.275. The thermal stresses for TWC substrate exceeded the strength of the material. Therefore, it is necessary to redesign the TWC substrate because it has much shorter service life than design life.

Three Dimensional Electro-Fluid-Structural Interaction Simulation for Pumping Performance Evaluation of a Valveless Micropump (무밸브 마이크로 펌프의 성능평가를 위한 3차원 전기-유체-구조 상호작용 해석)

  • Pham, My;Phan, Van Phuoc;Han, Cheol-Heui;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.744-750
    • /
    • 2009
  • In this study, the pumping performance of a piezoelectric valveless micropump is simulated. The micropump, which was developed in the previous work, is composed of a four-layer lightweight piezocomposite actuator, a polydimethylsiloxane (PDMS) pump chamber, and two diffusers. The piezoelectric domain, the fluid domain and the structural domain are coupled in the three-dimensional simulation. We used ANSYS for the piezoelectric and structural domains and ANSYS CFX for the fluid domain. The effects of driven frequency on the flow rate have been investigated by simulating the flow characteristics for 10 Hz and 40 Hz driven frequencies. The flow rates with respect to driven frequencies up to 300 Hz have been calculated.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.