• Title/Summary/Keyword: 유동 천이

Search Result 337, Processing Time 0.029 seconds

LP-MAC Technique in association with Low Power operation in unmanned remote wireless network (무인원격 무선 네트워크 환경에서의 저전력 운용을 고려한 LP-MAC 기법)

  • Youn, Jong-Taek;Ryu, Jeong-Kyu;Kim, Yongi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1877-1884
    • /
    • 2014
  • Because of the limited power resource, we need a reliable low-power media access control technique suitable for unmaned remote sensor operation condition for the unmanned sensor processor to perform the task in the remote wireless network situation. Therefore CSMA/CA and X-MAC is generally considered to effectively transmit the signal in the low-power wireless network. In this paper, we propose the more efficient low-power LP-MAC Technique which consumes the minimum power and transmits the data faster in condition that the mobile nodes' joining to and leaving from the network which consists of the fixed nodes is fluid. The fixed nodes operate in an asynchronous mode to perform the network self-configuration and transmit data faster to the mobile node which is frequently join and leave the network. When the mobile node leaves the network, the network's operation mode will be synchronous mode to achieve the minimum power consumption, thus the minimum power operation becomes possible.

A Study on the Water Hammer Arrester Considering the Way of First Assessment Test (최초의 평가시험 방법을 고려한 수격흡수기의 장치에 관한 연구)

  • Yeum, Moon-Cheon;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. So, water hammer analysis is very important for limiting the damage caused to pipeline, pump and valve systems by operation conditions. On the other hand, water hammer arrester has been manufactured and used in order to minimize the damage caused by water hammering phenomenon in domestic, and it has been produced and installed as the low cost-oriented because of being no separate standard in the meanwhile. Therefore, our research team investigated about the standardization of water hammer arrester performance through the various methods, such as test methods for verification of one pipe, assuming the occurrence of water hammer in a water-based fire extinguishing system, separated for opening impact pressure and shut off impact pressure and for a branch pipe in order to make guideline for water hammer arrester performance. And finally, verified the performance of the water hammer pressure as the simple mechanical way using the U-shaped pipe and a test weight, so KFI standards for the water hammer arrester could be established.

Analysis on Correlation Coefficient of Surface Image Velocimeter(SIV) for improved accutacy (정확도 향상을 위한 표면영상유속계(SIV)의 상관계수 분석)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yoon, Kwon-kyu;Kim, Seo-jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.381-381
    • /
    • 2015
  • 표면영상유속계측법(Surface Image Velocimeter; SIV)은 영상분석기법의 일종으로 하천 표면의 유동을 영상저장장치로 기록하고 연속되는 이미지상의 입자이동을 계산하여 유속을 산정하는 방법이다. 그러나 표면영상유속계를 활용한 유속분석과정에서 현장 상황에 따라 많은 오차 요인들이 있을 수 있기 때문에 계산한 유속 산정 결과를 그대로 사용하면 정확도가 낮아질 수 있다. 특히 야간 영상과 같은 영상의 화질이 떨어지는 경우에는 유속 산정 결과를 필터링해서 사용해야 한다. 이는 순간 유속장을 분석하는 과정에서 획득된 이미지에 따라 분석된 유속벡터가 평균 유속보다 과다하게 크거나 상관계수 값이 너무 작은 경우가 포함되기 때문이다. 이 연구에서는 제주도 외도천 외도정수장에서 2013년 5월 27일 집중호우에 의한 유출 발생 주 야간 유출영상자료를 획득하여 표면영상유속계(SIV)와 ADCP를 활용하여 유량을 분석하고, 동시에 고정식 전자파 표면유속계인 Kalesto 관측 유량과 비교 분석하였다. 비교과정에서 제주도는 댐방류량과 같은 유량의 참값이 없으므로 각각 관측기기의 상대적인 비교를 하여 경향성을 분석하였다. 분석결과 주간유출영상은 상관계수가 0.6~0.7범위에 해당하는 유속이 전체 59개의 유속벡터 중 6.8%로 나타났으며, 0.7~0.8범위가 13.6%, 0.8~0.9범위가 18.6%, 0.9~1.0범위가 61.0%의 퍼센트를 나타났다. 야간유출영상을 주간유출영상과 비교해보면 0.6~0.7범위에 해당하는 상관계수가 6.8% 높게 분석되었으며, 반대로 0.9~1.0범위에 해당하는 상관계수는 17% 낮게 분석되었다. 이와 같은 결과는 야간유출영상이 주간유출영상에 비해 영상의 질이 떨어짐을 나타내며 표면영상유속계를 적용하여 유량을 산정하는 과정에서 획득되는 영상에 따라 상관계수에 대한 합리적인 필터링 과정이 필요하다.

  • PDF

Development and application of river hydraulic analysis model for discontinuous flow simulation (불연속 흐름 모의를 위한 하천수리모형의 개발 및 적용)

  • Jeong, Anchul;Noh, Joonwoo;Kim, Yeonsu;Kim, Sunghoon;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.291-291
    • /
    • 2018
  • 하천 및 수자원의 효율적인 관리와 더불어 다양한 수공구조물의 운영 및 관리를 위해서 구조물 주변에서 발생하는 불연속 흐름 및 급변류 등의 현상과 구조물 운영을 반영한 수치해석 기법을 이용한 모델 개발의 중요성이 커지고 있다. 본 연구에서는 하천의 불연속 흐름을 모의하기 위한 1차원 흐름해석 모형(K-River)을 개발하였다. 본 모형은 천이류와 급변류를 수치적으로 안정하게 처리하기 위하여 지배방정식을 보존형 Saint-Venant 방정식으로 선정하고, FVM과 Forward Euler 방법을 이용하여 이산화를 수행하였다. 수치흐름률을 계산하기 위해서 불규칙 단면과 하상의 급경사 등에 신뢰도가 높은 기법으로 판단되는 근사 Riemann해법 중 하나인 HLL flux를 이용하였다. 개발된 K-river 모형의 검증을 위해서 해석해가 존재하는 타원형의 하상융기가 있는 하도에 적용하였으며, 국내에서 하천 설계 및 관리를 위해서 광범위하게 이용되고 있는 1차원 흐름해석 모형인 FDM기반의 HEC-RAS 모의결과와 비교 검토를 수행하였다. 그 결과, FDM기법에서는 모의되지 않는 일부 급변류 패턴을 개발 모형을 통해 모의가능하였으며, 전체적으로 K-River가 기존 모형 보다 해석해에 근사한 결과를 나타내었다. 또한, 배수문을 비롯하여 합류부, 분류부, 펌프장, 암거 등이 설치되어 운영되고 있는 아라뱃길에 적용하여 K-River의 적용성을 평가하였다. K-River를 이용하여 아라뱃길의 흐름분석을 수행한 경우가 HEC-RAS를 이용한 경우보다 수위와 유량의 유동을 시간에 따라 세밀하게 모의하였으며, 이는 배수효과에 의한 파의 전달이 FDM기법 대비 정확히 모의되기 때문으로 판단된다. 추후 연구에서는 현재보다 시간간격을 상세화 하여 수집된 관측수위를 통해 추가적인 검증을 수행하고, 다양한 특성을 가진 타 하천 등에 적용하여 모형의 적용성을 확대하고자 한다.

  • PDF

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

Specific Impulse Gain for KSLV-II with Combination of Dual Bell Nozzle and Expansion-Deflection Nozzle (듀얼 벨 노즐과 E-D 노즐을 결합한 한국형발사체의 비추력 증가)

  • Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • A basic numerical analysis was performed to confirm the possibility of combining a dual bell nozzle and an Expansion-Deflection(E-D) nozzle. The dual bell nozzle was designed based on the first-stage nozzle of the Korean Space Launch Vehicle that is being developed, and the E-D nozzle concept was applied to the dual bell nozzle. The inlet condition was analyzed by applying eight types of frozen flow analysis, and k-${\omega}$ SST was selected as the turbulence model. The number of optimal grids was obtained as 240,000 through the grid sensitivity analysis. As a result, it was confirmed that the transition altitude increased owing to over-expansion when the E-D nozzle concept was applied to the dual bell nozzle, and the specific impulse gain was obtained at high altitudes compared with the KSLV-II first-stage engine.

Applicability Test of STPS for HEC-RAS-based Turbidity Prediction Model in the Nagdonggang (HEC-RAS에 기반한 탁도예측모형 STPS의 낙동강에 대한 적용성 검토)

  • Lee, Namjoo;Choi, Seohye;Kim, Chang-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.245-252
    • /
    • 2021
  • A turbidity current in a river and a lake occurs due to diverse nutrient loading including suspended sediment in sediment runoff, which affects water withdrawal and river environments. We developed one dimensional time-variant numerical model based on Python for the Nagdonggang mainstream. We examined the numerical stability and the applicability of the model by performing the simulation of quasi-steady flow in non-flooding for three cases, which are different according to the point and the amount of turbidity inflows in the Nagdonggang upstream and a tributary. The result was reasonable in the respect of the conservation of matter. The model will facilitate to simulate a large river if we can secure the data of turbidity variations in a target river reach or measured points in a field.

Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects (하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석)

  • Choi, Hyosang;Lee, Changjin;Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.60-67
    • /
    • 2019
  • To understand the low frequency instability(LFI) characteristics in hybrid rockets combustion, effects of equivalence ratio variations on the phase shift between pressure and heat release oscillations were investigated by using the direct numerical simulation. The change in the equivalence ratio of the main chamber was simulated by the temperature and composition variation of the combustion gas introduced into the post-combustion chamber. In the results, additional combustion appeared along with vortex generation at the backward step, and combustion pressure and heat release oscillations were observed as the vortex moved. In addition, the results confirmed that the phase difference between the pressure and heat release oscillation shifts because of the changes in the propagation velocity of pressure wave as the temperature of combustion gas changes.

Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept (Fractal 나무의 개념을 기반으로 한 설마천 시험유역의 Fractal 차원 추정)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.

Study on Production Performance of Shale Gas Reservoir using Production Data Analysis (생산자료 분석기법을 이용한 셰일가스정 생산거동 연구)

  • Lee, Sun-Min;Jung, Ji-Hun;Sin, Chang-Hoon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.58-69
    • /
    • 2013
  • This paper presents production data analysis for two production wells located in the shale gas field, Canada, with the proper analysis method according to each production performance characteristics. In the case A production well, the analysis was performed by applying both time and superposition time because the production history has high variation. Firstly, the flow regimes were classified with a log-log plot, and as a result, only the transient flow was appeared. Then the area of simulated reservoir volume (SRV) analyzed based on flowing material balance plot was calculated to 180 acres of time, and 240 acres of superposition time. And the original gas in place (OGIP) also was estimated to 15, 20 Bscf, respectively. However, as the area of SRV was not analyzed with the boundary dominated flow data, it was regarded as the minimum one. Therefore, the production forecasting was conducted according to variation of b exponent and the area of SRV. As a result, estimated ultimate recovery (EUR) increased 1.2 and 1.4 times respectively depending on b exponent, which was 0.5 and 1. In addition, as the area of SRV increased from 240 to 360 acres, EUR increased 1.3 times. In the case B production well, the formation compressibility and permeability depending on the overburden were applied to the analysis of the overpressured reservoir. In comparison of the case that applied geomechanical factors and the case that did not, the area of SRV was increased 1.4 times, OGIP was increased 1.5 times respectively. As a result of analysis, the prediction of future productivity including OGIP and EUR may be quite different depending on the analysis method. Thus, it was found that proper analysis methods, such as pseudo-time, superposition time, geomechanical factors, need to be applied depending on the production data to gain accurate results.