• Title/Summary/Keyword: 유동 안정성

Search Result 603, Processing Time 0.023 seconds

The Current State and Application of project Financing followed by Sale after Building System of the Apartment (공동주택 후분양 전환에 따른 프로젝트 금융의 현황 및 활용방안)

  • Lee Sung-Rock;Moon Hwi-Young;Lee Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.218-225
    • /
    • 2004
  • The supply for the apartment complex in Korea has been accomplished by the sale before building system as a way of institutional means to support massive housing supply in the past. Although this sale before building system has helped the provision of the housing, the necessity of that has been weakened in the current housing market. As this market is changed to emphasize on consumer, the necessity of conversion to sale after building system was raised and finally enforced partially. However, the sale after building system has difficulty in ensuring construction fund and the safety of housing business. So, the diversification in the style of business structure we and the strategy for the activation of construction fund will solve these problems. Consequently, this essay examine the change and influence in the construction fund after adopting sale after building system and suggest the appropriate strategy in project financing for providing fund and reducing the risk in construction business.

A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle (코안다 효과를 이용한 제트 특성에 관한 연구)

  • Lee, Dong-Won;Lee, Sak;Kim, Byung-Ji;Kwon, Soon-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.706-713
    • /
    • 2007
  • The jet structure issuing from a conventional convergent nozzle of variable expansion rate is compared with the result from the nozzle of a constant expansion rate using a normal type annular slit. In experiments, to investigate the jet characteristics between the two cases of jet, the mean velocity of nozzle exit is fixed to be 90m/s, the pressures along the jet axis and radial directions are measured by a scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution obtained by calculation from the measured static and total pressures is compared. Also to obtain the highly stable and convergence jets, it is turned out that the flow through a nozzle of constant expansion rate using the Coanda effect with an annular slit is the most preferable than that case through variable expansion rate nozzle. Furthermore, it is found that the pressure drop along the nozzle for the constant expansion rate nozzle is small relatively against to the case of variable expansion rate nozzle.

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

Deterioration Diagnosis and Petrogenesis for Rock Properties of the Stone Lantern in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석등의 훼손도 진단 및 기원암의 성인적 해석)

  • Lee, Myeong Seong;Yi, Jeong Eun;Pyo, Su Hee;Song, Chi Young;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.5-18
    • /
    • 2005
  • Rock materials of the Stone Lantern in the Gwanchoksa temple was composed of dark grey granodiorite. This Stone Lantern is partly structural distortion as S-shape, especially, rocks of the upper supports and under the roof materials were highly deterioration due to the surface exfoliation, and strong secondary contaminations owing to the discoloration by oxidation of inserted iron plates between the rock properties, and white grey to dark black contaminants along the rain path way. Rock surface of the Stone Lantern occurred as partly green patches because of coated by algae, lichen and moss. This biological problems are need for cleaning and treatments. The Stone Lantern have to be considered to conservation method that can reduce weathering factors with long-term monitoring about environmental change for structural stability, surface degradation and mechanical weathering. Materials of the Stone Lantern and basement rocks of the area are consisted of same petrogenetic granodiotite based on occurrences, petrological and geochemical characteristics.

  • PDF

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프 밸브의 동특성 해석 및 작동성능 분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.70-77
    • /
    • 2011
  • A ventilation-relief valve performs as a safety-valve assembly for the liquid-propellant feeding system of space launch vehicle. This valve plays a role of relieving the vaporized propellants from propellant tanks during the filling and storing stages of propellants. Also it regulates to maintain the pressure of ullage volume of on-board propellant tanks within the safety-margin during the flight. The simulation model of ventilation-relief valve is designed with AMESim to predict and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of the opening and closing pressures and their operating durations of valve by AMESim analysis are compared with the results of mathematical methods. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditionss, which shall be used in Korea Space Launch Vehicle-II.

Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump (양방향 축류펌프용 임펠러 블레이드의 형상최적설계)

  • Baek, Seok Heum;Jung, Won Hyuk;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1141-1150
    • /
    • 2012
  • This paper describes the shape optimization of impeller blades for an anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has efficiency much lower than that of a classical unidirectional pump because of the symmetry of the blade type. In this study, by focusing on a pump impeller, the shape of the blades is redesigned to develop a bidirectional axial pump with higher efficiency. The commercial code employed in this simulation is CFX v.13. The CFD result of the pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate-model-based optimization using orthogonal polynomials are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable for impeller blades and explain the optimal solution as well as the usefulness of satisfying the constraints of the pump torque and head.

Fabrication of Porous Alumina Mold for the Casting Process of Fine Ceramics (Fine Ceramics의 Casting공정을 위한 다공질 알루미나 몰드의 제조)

  • 박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.89-96
    • /
    • 1999
  • Manufacturing conditions of the porous alumina mold were established to overcome various limits of the gypsum mold. For the preparations of the porous alumina mold, an activated charcoal was added to the Al2O3 with the wt% variation and then mixed. The binary slurry was study dispersed based on the examination of the ESA and rheological behaviro. The cylinder type alumina mold was cast in the gyspum mold and characterized by the shrinkage rate at the variable sintering temperature and the resistance against wear. It was proper to make a sintering of the Al2O3 by the surface diffusion which was non-shrinkage sintering mechansim, and intergranular neck growed stronger while sintering was being made. We studied a sintering by three categories; 1) thermodynamic method below 1,000$^{\circ}C$, 2) kinetic method above 1,000$^{\circ}C$ and 3) combined method. In the results of the respective works, combined method was superiro to the others. The prepared Al2O3 mold had relatively high strength, low drying rate, the resistance against the acid or base and good casting behavior.

  • PDF

Penicillin Fermentation using a Carrier-supported Mycelial Growth (담체에 고정화된 균사체 증식을 이용한 페니실린의 발효)

  • Park, Sang K.;Kim, Jung H.;Park, Young H.
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 1985
  • A carrier-supported mycelial growth of Penicillium chrysogenum was applied to penicillin fermentation system. Among various materials tested, celite was found to be most effective for both spore adsorption and bioparticle development. Hyphal growth through pore matrices of the material showed strong anchorages and provided highly stable biofilm growths. When 5-10% celite was employed, both cell growth and penicillin production were observed to increase significantly comparing to the dispersed filamentous growth. Specific productivity of penicillin, however. was found to be kept almost constant at a value of 1,900 unit/g cell/hr. A semicontinuous fermentation in a fluidized-bed reactor. using the tarrier-supported biofilm growth, was conducted successfully although free mycelia appeared in the late phase of the fermentation made the reactor operation difficult. Control of the size of bioparticles was considered as a major operating factor to maintain the reactor productivity at a desired level.

  • PDF

Parallelization of Multi-Block Flow Solver with Multi-Block/Multi-Partitioning Method (다중블록/다중영역분할 기법을 이용한 유동해석 코드 병렬화)

  • Ju, Wan-Don;Lee, Bo-Sung;Lee, Dong-Ho;Hong, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.9-14
    • /
    • 2003
  • In this work, a multi-block/multi-partitioning method is suggested for a multi-block parallelization. It has an advantage of uniform load balance via subdividing of each block on each processor. To make a comparison of parallel efficiency according to domain decomposition method, a multi-block/single-partitioning and a multi-block/ multi-partitioning methods are applied to the flow analysis solver. The multi-block/ multi-partitioning method has more satisfactory parallel efficiency because of optimized load balancing. Finally, it has applied to the CFDS code. As a result, the computing speed with sixteen processors is over twelve times faster than that of sequential solver.