• Title/Summary/Keyword: 유동 경향

Search Result 543, Processing Time 0.022 seconds

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.

Effects of Gas Injection on the Recovery of Copper Powder from Industrial Waste Water in Fluidized - Bed Electrolytic Reactors (유동층 전극반응기에서 기체의 유입이 산업폐수로부터 동입자의 회수에 미치는 영향)

  • Song, Pyung-Seob;Son, Sung-Mo;Kang, Yong;Kim, Seung-Jai;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.485-490
    • /
    • 2005
  • Effects of gas injectino on the copper recovery form industrial waste water in a fluidized-bed electrolytic reactor were investigated. Effects of gas injection on the individual phase holdup and efficiency of copper recovery for given operating variables such as liquid and gas velocity (0.1~0.4 cm/s), current density ($2.0{\sim}3.5A/dm^2$) and amount of fluidized solid particles (1.0~4.0 wt%) were examined. The solid particle, whose diameter and swelling density were 0.5 mm and $1100kg/m^3$, respectively, was made of polystylene and divinyl benzene. It was found that the holdup of gas and solid phases increased, but that of the liquid phase decreased with increasing velocity of gas injected into the reactor. With increasing gas and/or liquid velocity and increasing amount of fluidized particles is not needed, the rate of copper recovery increased to a maximum value of and subsequently decreased. The recovery rate of copper increased almost linearly with increasing current density in accordance with Faraday's law.

Assessment of MARS Multi-dimensional Two-phase Turbulent Flow Models for the Nuclear System Analysis (발전소 계통해석을 위한 MARS 코드의 다차원 이상 난류 유동 모델 검증계산)

  • Lee S.M.;Lee U.C.;Bae S.W.;Chung B.D.
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.1-7
    • /
    • 2006
  • The multi-dimensional two-phase flow models were developed for analyze the multi-dimensional behaviors or nuclear systems. To verify the simple turbulence model, The single phase mixing problem in a rectangular slab was calculated and compared with the commercial CFD code results. That result shows a good agreement with the CFD result. And the RPI Air-water experiments were simulated to assess the two-phase turbulence model in the multi-dimensional component. The first calculated distribution or void-fraction is highly dispersed and diffusive. It was revealed that the main reason is undesirable stratification force in a horizontal stratified flow regimes. Therefore the horizontally stratified flow regime is deleted because the stratified flow regime is not expected in multi-dimensional flow. With the modification of the flow regime, the predicted flow patterns and void fraction profiles are in good agreement with the measured data.

Size and Rising Velocity of Liquid Drops in Liquid-Liquid Fluidized-Bed Extractors (유동층 액-액 추출기에서 액적의 크기 및 상승속도)

  • Jung, Sung-Hyun;Kim, Jae-Han;Kang, Tae-Gyu;Kang, Yong;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Characteristics of size, rising velocity and distribution of liquid drops have been investigated in a immiscible liquid-liquid fluidized-bed whose diameter was 0.102 m and 2.5 m in height. Effects of velocities of dispersed (0~0.04 m/s) and continuous (0.02~0.14 m/s) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties in the extractor have been determined. The resultant flow behavior of liquid drops became more complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid drops depended strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. However, the size of liquid drop exhibited a local maximum with increasing continuous liquid velocity. The size and rising velocity of liquid drops have been well correlated in terms of operating parameters.

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System (항공기 무장시스템 Gun Gas 공력특성에 관한 연구)

  • Choi, Hyoung Jun;Kim, Seung Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.623-629
    • /
    • 2020
  • This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

A Study on the Visualization of Urban Wind Flow by Using Thermochromic Pigment (열변색성 염료를 이용한 도심 공기 유동 시각화에 관한 연구)

  • Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.291-299
    • /
    • 2021
  • Recently, due to environmental problems caused by densification and high rise of urban areas, interests in air flow is increasing and appropriate shape and layout design of buildings is required. Therefore, in this study, we intend to propose an experimental method that can observe the air flow around a building using thermochromic pigment. Thermochromic pigments have limitations in observing precise temperature changes due to the characteristic that the color changes only with respect to a specific temperature, but they have the advantages of easy configuration of experimental equipment and short time required for experiments. In this study, the air flow tendencies around a building was examined by performing CFD analysis for a simple model and then compared with the thermochromic experiment results in order to review the usefulness of the proposed experimental method. As a result of the experiment, it was possible to observe the formation of separated flow and vortex region generated by buildings using the charateristics of thermochromic pigment and it was confirmed that the proposed method can be useful for buildings design and urban city planning.

Preliminary Design on Jet Pump for Fuel Transfer and Analysis of Flow Distribution (연료 이송용 제트펌프 기본 설계 및 유동장 해석)

  • Kong Chang-Duk;Park Jong-Ha;Kim Young-Kwang;Han Dong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • In the present study, preliminary design and analysis of flow distribution for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

  • PDF

A Study on the Flow Characteristics around Cooling Tubes of Fan Coil Unit for Ship (선박용 팬코일장치 냉각관 주위의 유동특성에 관한 연구)

  • Bae, Bong-Gap;Choi, Keom-Ran;Ro, Byeong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.151-156
    • /
    • 2009
  • This experimental study investigated in to the flow characteristics around staggered cooling tube arrays of fan coil unit for ship. A particle image velocimetry technique was employed to obtain detailed measurements at inlet-velocity-based Reynolds numbers of $Re=1.5{\times}10^3{\sim}Re=2.5{\times}10^3$. As for the results, the flow evolves rapidly and becomes spatially periodic in the streamwise direction after a relatively short distance. The flow exhibits strong Reynolds number dependence in developing region but no significant Reynolds number effects are observed in spatially periodic region.

  • PDF

Justification and Planning Process of Flexible Manufacturing System (FMS) (유동제조시스템 활용을 위한 기본요소 : 정당성 및 진행방법)

  • 홍재우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.43-48
    • /
    • 1992
  • 국제적으로 증가되어지고 있는 제조업분야의 경쟁으로 인하여 사업체들 간에는 경쟁적으로 이상적인 방법의 공장자동화 (Factory Automation)를 품질향상 및 생산성증가를 위한 한 방법으로 채택하고 있다. 치열해지는 경쟁력으로부터 시장을 고수하기 위해 공장자동화가 기업들 간에는 근본대책으로 설정되고 있는데, 이러한 경향은 사업체들이 보다 나은 품질의 제품을 저렴한 가격으로 소비자에게 제공하고 생산력향상을 경제적으로 달성하기 위하여 많은 액수의 비용을 투자하게끔 하고 있다. 현재 여러 종류의 공장자동화 방법이 개발되고 있고, 채택되어지고 있다. 그 중에서도 현재 많은 각광을 받고있는 분야가 유동제조시스템(Flexible Manufacturing System ; FMS)이다. 본 연구에서는 유동제조시스템을 공장자동화의 한 방법으로 채택하기 위해 필요한 기본적인 두 가지 요소, 정당화 및 계획과정에 관하여 논하였다. 우선적으로 정당화되어야 할 문제점들 중에는: 1) 유동성에 대한 이해와 경제성에 대한 연구, 그리고 2) 노사관계에 관한 문제점들을 고찰하여 각 기업의 특성에 맞게 조절을 해야한다. 이러한 점들에 대한 이해, 연구, 고찰이 이루어지고 정당성이 성립이된 후에는 유동제조시스템을 점차적으로 정착시킨다. 이 진행과정에서 성립되어야 할 점들은 다음과 같다. 첫째, 시스템 채택방법을 택하고, 둘째, 분임조를 결성시켜 설정되어진 과제들을 분담하여 해결해 나아가면서 유동제조시스템이 하나의 고유적인 방법으로 회사의 특색 및 실정에 맞게 정착되도록 한다.

  • PDF

Study of Flow Characteristics of Gel Propellant through Various Injector Geometries (인젝터 형상 변화에 따른 Gel 추진제의 유동 특성 연구)

  • Oh, Jeong-Su;Jeon, Doo-Sung;Choi, Sang-Tae;Kim, Deok-Yoon;Choi, Yang-Ho;Lee, Jeong-Hyuk;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.300-303
    • /
    • 2010
  • The present study investigates the flow characteristics of simulant gel propellant(carbopol 0.5%wt) in a variety of injectors. Rheological data for gel propellant has been measured and injector flow characteristics for plain-orifice, chamfered-orifice and venturi type injector have been numerically analyzed. The apparent viscosity of plain-orifice and chamfered-orifice have tendency to increase along axial direction, whereas for venturi type injector, low viscosity has been achieved in the injector flow. This phenomenon was clearly pronounced as Reynolds number is increased.

  • PDF