• Title/Summary/Keyword: 유동해석

Search Result 6,470, Processing Time 0.034 seconds

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Late Quaternary Seismic Stratigraphy and Sedimentation of the Southeastern Continental Shelf, Korea Strait (한국 남동해역(대한해협) 대륙붕지역의 후 제4기 탄성파 층서 및 퇴적작용)

  • Yoo Dong-Geun;Lee Chi-Won;Min Gun-Hong;Lee Ho-Young;Choi Joung-Gyu;Park Soo-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.201-206
    • /
    • 2005
  • Interpretation of high-resolution seismic profiles from the southeastern continental shelf of Korea reveals that the sedimentary deposits consist of seven seismic units formed during the late Quaternary. These units comprise lowstand, transgressive, and highstand systems tracts. The lowstand systems tract consists of a lowstand prograding wedge (SU1) and a mass flow deposit (SU2) including slumps and slides. The transgressive systems tract contains four seismic units: an ancient beach/shoreface deposit (SU3), a channel-fill deposit (SU4), a transgressive sand layer (SU5), and a transgressive sand ridge (SU6). The highstand systems tract consists of an inner-shelf mud deposit (SU7) derived from the Nakdong and Seomjin rivers during the last 6 ka when sea level was close to the present level.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

Effects of Videos about Good and Evil on Moral Judgments Regarding Self and Others (인간의 선악을 보여주는 영상은 자신과 타인에 대한 도덕적 판단에 어떤 영향을 미치는가?)

  • Kim, ShinWoo;Lee, WonSeob;Li, Hyung-Chul O.
    • Science of Emotion and Sensibility
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • Previous resarch demonstrated that moral judgment is not an outcome of rational reasoning, but an independent variable determined by diverse factors. The effects of disgust on moral harshness, audience effect on moralistic punishment are some examples that support this view. The variability of moral judgment raises a question on what effects video stimuli might have on moral judgments. Although a few studies (Schnall, Roper, & Fessler, 2010) have shown that watching a prosocial video clip promote moral behavior, no research have simultaneously tested the effects of both positive and negative video clips on moral (not bahavior but) judgments. Hence, this research tested the effects of viewing videos about good and evil on moral judgments regarding the self and others. To this end, participants were asked to view a video clip depicting content of either positive or negative human behavior and required to make moral judgments on conduct described in a scenario assuming that the person committing the act was either themselves or another person. The results showed significant effects of both video contents (positive, negative) and the actor (self, others) on moral judgments, but they were qualified by the interaction between the two. In particular, participants who watched evil deed of others made harsher judgments on others' moral transgression. Theses results demonstrate that video contents influence moral judgments, and the effect depends on the actor of the immoral behavior. In general discussion, we interpreted the results based on moral disgust, framing effect, and fundamental attribution error.

The Effect of Weather and Season on Pedestrian Volume in Urban Space (도시공간에서 날씨와 계절이 보행량에 미치는 영향)

  • Lee, Su-mi;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.56-65
    • /
    • 2019
  • This study empirically analyzes the effect of weather on pedestrian volume in an urban space. We used data from the 2009 Seoul Flow Population Survey and constructed a model with the pedestrian volume as a dependent variable and the weather and physical environment as independent variables. We constructed 28 models and compared the results to determine the effects of weather on pedestrian volume by season, land use, and time zone. A negative binomial regression model was used because the dependent variable did not have a normal distribution. The results show that weather affects the volume of walking. Rain reduced walking volume in most models, and snow and thunderstorms reduced the volume in a small number of models. The effects of the weather depended on the season and land use, and the effects of environmental factors depended on the season. The results have various policy implications. First, it is necessary to provide semi-outdoor urban spaces that can cope with snow or rain. Second, it is necessary to have different policies to encourage walking for each season.

A Study on the Flow Characteristics of the Flue Gas Recirculation with the Change of Venturi Tube Shape (벤튜리관 형상에 따른 배기가스 재순환 유동 특성에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Kim, Dae Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2019
  • Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in automobile engines and incinerators. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal location of air nozzle exit position by changing its position in a venturi tube for the maximum flue gas recirculation effect. In addition, the flue gas recirculation characteristics with a cone at the exit of air nozzle was elucidated with flue gas recirculation flow rate ratio and mixed gas exit temperature. When the air nozzle exit position was changed from the start position (z = 0) to the end position (z = 0.6m) of the exhaust gas recirculation exit pipe, the change of streamline and temperature distribution in the venturi tube was observed. The exhaust gas recirculation flow rate and the average temperature at the mixed gas exit position was quantitatively compared. From the present study, the optimal location of air nozzle exit position for the maximum flue gas recirculation flow rate ratio and maximum mixed gas exit temperature is z = 0.15m (1/4L). In addition, when the cone is installed at the outlet of the air nozzle, the velocity of the air nozzle outlet is increased, the flue gas recirculation flow rate was increased by about 2 times of the flow rate without cone, and the mixed gas exit temperature is increased by $116^{\circ}C$.

A Study on the Encapsulation of Cosmetic Oil Using Computational Fluid Dynamics (전산유체역학을 이용한 화장품 오일 캡슐레이션 현상에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.638-643
    • /
    • 2021
  • Oil is used in various industries, including the agricultural sector, food industry, and functional cosmetics. These oils are chemically unstable and prone to oxidation when exposed to oxygen, light, moisture, or high temperatures. Therefore, various attempts have been made to encapsulate them so that they are not exposed to such environments. When oil is injected into a refrigerant with greater density, the oil can be encapsulated as it rises due to buoyancy caused by the density difference. In this study, oil encapsulation was simulated to find the optimal conditions for operating equipment using computational fluid dynamics (CFD) for multiphase flows. Water or serum can be used as a refrigerant. The viscosity of water is relatively small, and if it is used as a refrigerant, oil droplets can be produced well even if oil and water are continuously injected in the equipment. However, the viscosity of serum is very high, and if it is used, the oil is stretched out and does not leave the nozzle. The results show that when using serum as a cooling medium, oil encapsulation is possible if the injection is stopped for some time after instantaneous injection at high speed.

Modern transformation phrase of (<공무도하가>의 현대적 변용 양상)

  • Ha, Gyoung Sook
    • (The)Study of the Eastern Classic
    • /
    • no.43
    • /
    • pp.93-123
    • /
    • 2011
  • is a work of art that was composed through fluid and laminating by being passed down orally for a long time like other ancient songs. As well as, it is given a history of literature's value in the point that it is a Korea's first poetry work, it is considered it casts a long shadow to establishing traditionality of our country's poetry. Even today, has been transformed and recreated into a variety of genres because its literary subject carry the universal emotions and win the sympathy. This manuscript examines modern poetry, modern novel and modern songs that consist of changed ancient song and looks modern writers' perspective about through characteristic that each of works has and then aims checking special situation and meaning that is implicit and recognizing the value of the original. As the has been recreated as modern poetry, it shows the current chaotic situation specifically by embodying it and actively seeks expressing human character, agony and longing, etc, by excluding factor of the original mythical interpretation. Also it rouses situation of reality as detained and repressed. , recreated as modern novel, expands narrative structure and shows portrait of various characters and speaks diverse human condition about reality and suggests plan for dealing with that. Basic emotions of the original is strongly passed to modern popular song . It makes us know that universal emotions which human has across generations can touch people transcending time and space and it is a fresh discovery and possibility that reaffirms the emotion of our people. Ancient song has been studied with emphasis on resignation and grief by focusing on the subject, simply parting and death. But recently, through transformation between a wide range of genres. it carries the spirit of the times that author toward, showing realistic and specific situations. Flexibility of ancient song is expected to continue its vitality transcending generations. Ancient song is assured that it can lead various aspects through active groping in era of change with a various possibility, that the original has, through communication between genres.

A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 열화과정에서 OCV 감소 및 회복 거동을 통한 비가역적 열화 연구)

  • Yoo, Donggeun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.217-222
    • /
    • 2022
  • It is very important to analyze the OCV change behavior during the open circuit potential holding (OCV holding) process, which accelerates the evaluation of the electrochemical durability of the PEMFC membrane. In this study, an empirical formula using the experimental data of three MEAs with different durability was created and compared. The durability evaluation time of the reinforced membrane MEA without radical scavenger inside the membrane was 383 h, and the durability evaluation time of the reinforced membrane MEA with radical scavenger inside the membrane was 1,000 and 1,650 h, respectively. The degradation of the membrane was divided into the reversible degradation that can be recovered by activation and the irreversible degradation that is not recovered. The irreversible degradation of the membrane was indicated by an increase in hydrogen permeability, and the change in hydrogen permeability was similar to the irreversible degradation constant c of all three MEAs. The initiation of irreversible deterioration without recovery is indicated by an increase in hydrogen permeability, and the OCV is not recovered due to an increase in hydrogen permeability, so the slope of the OCV recovery line (ORL) decreases, which can be confirmed by an increase in the constant c value of the empirical formula.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.