• Title/Summary/Keyword: 유동장 해석

Search Result 1,071, Processing Time 0.025 seconds

Analysis on the Flow and Heat Transfer in a Large Scale CVD Reactor for Si Epitaxial Growth (Si 선택적 성장을 위한 대형 CVD 반응기 내의 열 및 유동해석)

  • Jang, Yeon-Ho;Ko, Dong Guk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • In this study, gas flow and temperature distribution in the multi-wafer planetary CVD reactor for the Si epitaxial growth were analyzed. Although the structure of the reactor was simplified as the first step of the study, the three-dimensional analysis was performed taking all these considerations of the revolution of the susceptor and the rotation of satellites into account. From the analyses, a reasonable velocity field and temperature field were obtained. However, it was found that analyses including the upper structure of the reactor were required in order to obtain more realistic temperature results. DCS mole fraction above the satellite surface and the susceptor surface without satellite was compared in order to check the gas species mixing. We found that satellite rotation helped gases to mix in the reactor.

Finite Element Analysis for Dielectric Liquid Discharge under Lightning Impulse Considering Two-Phase Flow (절연유체 내 2상유동을 고려한 뇌임펄스 응답 유한요소해석)

  • Lee, Ho-Young;Lee, Jong-Chul;Chang, Yong-Moo;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2097-2102
    • /
    • 2011
  • Discharge analysis technique for dielectric liquid was presented by using the Finite Element Analysis (FEA) under a lightning impulse incorporating two-phase flow phenomena which described gas and liquid phases in discharge space. Until now, the response of step voltage has been extensively explored, but that of lightning impulse voltage was rarely viewed in the literature. We, therefore, developed an analyzing technique for dielectric liquid in a tip-sphere electrode stressed by a high electric field. To capture the bubble phase, the Heaviside function was introduced mathematically and the material functions for the ionization, dissociation, recombination, and attachment were defined in liquid and bubble, respectively. By using this numerical setup, the molecular dissociation and ionization mechanisms were tested under low and high electric fields resulted from the lightning impulse voltage of 1.2/50 ${\mu}s$. To verify our numerical results, the velocity of electric field wave was measured and compared to the previous experimental results which can be viewed in many papers. Those results had good agreement with each other.

Two-Dimensional Finite Element Analysis for Tidal Flat Simulation (조간대 모의를 위한 2차원 유한요소해석)

  • 서승원;박원경
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 1996
  • Two-dimensional finite element hydrodynamic models for long wave simulation usually adopt fixed land boundary. However moving boundary treatment is strongly required in the simulation of tidal flats for west and south coast of Korea. In this study very efficient and realistic moving boundary treatment is applied by considering incident long wave surface slope. Developed STEP-CM (Superior Two-step Explicit Program for Coastal Modeling) ,shows numerically stable results in comparative study for idealized one-dimensional channel. Real application of the model is done for Chonsu Bay where tidal flats are distributed along the coast. Nonlinear tidal current and tidal flat effects are easily simulated in STEP-CM and resulting circulations are detected around headland of Wonsan Island.

  • PDF

Development of Stereoscopic PIV Measurement Technique and Its Application to Wake behind an Axial Fan (Stereoscopic PIV 기법의 개발과 이를 이용한 축류 홴 후류의 유동해석)

  • Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.362-373
    • /
    • 2002
  • A stereoscopic PIV (SPIV) measurement system based on the translation configuration was developed and applied to the flow behind a forward-swept axial-fan. Measurement of three orthogonal velocity components is essential for flow analysis of three-dimensional flows such as flow around a fan or propeller. In this study, the translation configuration was adopted to calculate the out-of-plane velocity component from 2-D PIV data obtained from two CCD cameras. The error caused by the out-of-plane motion was estimated by direct comparison of the 2-D PIV and 3-D SPIV results that measured from the particle images captured simultaneously. The comparison shows that the error ratio is relatively high in the region of higher out-of-plane motion near the axial fan blade. The turbulence intensity measured by the 2-D PIV method is bigger by about 5.8% in maximum compared with that of the 3-D SPIV method. The phase-averaged velocity field results show that the wake behind an axial fan has a periodic flow structure with respect to the blade phase and the characteristic flow structure is shifted downstream in the next phase.

Unsteady Internal Flow Analysis of a Cathode Air Blower Used for Fuel Cell System (연료전지용 캐소드 공기블로어의 비정상 내부유동장 연구)

  • Jang, Choon-Man;Lee, Jong-Sung
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2012
  • This paper describes unsteady internal flow characteristics of a cathode air blower, used for the 1 kW fuel cell system. The cathode air blower considered in the present study is a diaphragm type blower. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is performed. Moving mesh system is applied to the numerical analysis for describing the volume change of the diaphragm cavity in time. Throughout a numerical simulation by modeling the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Variations of mass flow rate, force and pressure on the lower moving plate of a diaphragm cavity are evaluated in time. The computed mass flow rate at the same pressure and rotating frequency of a motor has a maximum of 5 percent error with the experimental data. It is found that flow pattern at the suction process is more complex compared to that at the discharge process. Unsteady nature of internal flow in the cathode air blower is analyzed in detail.

Effect of Igniter's Burning Rate on Negative Differential Pressure of Interior Ballistics (점화제 연소율이 강내탄도의 NDP에 미치는 영향)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Yoo, Seung-Young;Oh, Seok-Hwan;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.520-526
    • /
    • 2012
  • The appearance of the negative differential pressure(NDP), in which the shot base pressure is higher than the breech pressure, indicates that a potential damage on the gun system is increased. In order to safeguard the gun system, the igniter must be designed to minimize the NDP during the firing process. From this reason, the effect of igniter's burning rate on the NDP of the interior ballistics has been investigated through the numerical simulations. The NDP has been increased with increment of the coefficient in the burning rate of the igniter. A sudden change of the chamber pressure has been shown in case of using a singular coefficient.

  • PDF

Calculation of 3-D Navier-Stokes Equations by an IAF Method (인수분해 음해법에 의한 3차원 Navier-Stokes 방정식의 계산)

  • Seung-Hyun Kwag
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • The three-dimensional incompressible clavier-Stokes equations are solved to simulate the flow field around a Wigley model with free-surface. The IAF(Implicit Approximate Factorization) method is used to show a good success in reducing the computing time. The CPU time is almost an half of that if the IAF method were used. The present method adopts the local linearization and Euler implicit scheme without the pressure-gradient terms for the artificial viscosity. Calculations are carried out at the Reynolds number of $10^6$ and the Froude numbers are 0.25, 0.289 and 0.316. For the approximations of turbulence, the Baldwin-Lomax model is used. The resulting free-surface wave configurations and the velocity vectors are compared with those by the explicit method and experiments.

  • PDF

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 길이변화에 따른 비연소장에서의 성능특성)

  • Jeong, Bonggoo;Kim, Hong Jip;Jeon, Junsu;Ko, Youngsung;Han, Yeoung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • The performance characteristics of a subscale diffuser under non-reacting conditions for high-altitude simulation were numerically investigated with respect to different lengths of the secondary throat diffuser. The ratio of the length of the diffuser entrance to the nozzle exit diameter was set to 0, 50, and 100%. In addition, flow characteristics were studied for a range of length-to-diameter ratios of the secondary throat diffuser. An insufficient diffuser entrance length caused contraction of the plume immediately after the nozzle exit. When the length-to-diameter ratio was less than 8, a strong Mach disk was formed inside the diffuser, resulting in a sharp increase in pressure. In addition, flow characteristics in the diverging part of the diffuser were investigated for a range of diverging part lengths. A short diverging part may lead to abrupt pressure recovery, resulting in the possible application of mechanical load to the diffuser.

Wavelet Series Analysis of Axial Members with Stress Singularities (응력특이를 갖는 축방향 부재의 웨이블렛 급수해석)

  • Woo, Kwang-Sung;Jang, Young-Min;Lee, Dong-Woo;Lee, Sang-Yun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The Fourier series uses a vibrating wave that possesses an amplitude that is like the one of the sine curve. Therefore, the functions used in the Fourier series do not change due to the value of the frequency and that set a limit to express irregular signals with rapid oscillations or with discontinuities in localized regions. However, the wavelet series analysis(WSA) method supplements these limits of the Fourier series by a linear combination of a suitable number of wavelets. By using the wavelet that is focused on time, it is able to give changes to the range in the cycle. Also, this enables to express a signal more efficiently that has singular configuration and that is flowing. The main objective of this study is to propose a scheme called wavelet series analysis for the application of wavelet theory to one-dimensional problems represented by the second-order elliptic equation and to evaluate theperformance of proposed scheme comparing with the finite element analysis. After a through evaluation of different types of wavelets, the HAT wavelet system is chosen as a wavelet function as well as a scaling function. It can be stated that the WSA method is as efficient as the FEA method in the case of axial bars with distributed loads, but the WSA method is more accurate than the FEA method at the singular points and its computation time is less.