• Title/Summary/Keyword: 유동장

Search Result 2,073, Processing Time 0.043 seconds

The Effect of Compressibility Terms on the Simulation of the Flowfield around a Cylinderical Afterbody (실린더 후부 유동장 모사를 위한 압축성 수정항의 영향)

  • 김성훈;정명균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.15-23
    • /
    • 1999
  • K-$\omega$ model is used for simulation of flowfield around the cylinderical afterbody. In addition to two-equation turbulence model, modification terms for the compressibility effects are applied to the simulation. Although the estimations of the skin friction and the surface pressure distribution at hypersonic ramp flowfield were satisfactory, the result of the simulation with the modifications for this flowfield is worse than that of the original K-$\omega$ model. The compressiblility modification terms do negative effects on the estimation. The basic research on the turbulence model for the compressible flowfield has to be further conducted.

  • PDF

A CFD Study of the Supersonic Ejector-Pump Flows (초음속 이젝터 펌프 유동에 관한 수치해석)

  • 이영기;김희동;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.58-66
    • /
    • 1999
  • The flow characteristics of supersonic ejectors is often subject to compressibility, unsteadiness and shock wave systems. The numerical works carried out thus far have been of one-dimensional analyses or some Computational Fluid Dynamics(CFD) which has been applied to only a very simplified configuration. For the design of effective ejector-pump systems the effects of secondary mass flow on the supersonic ejector flow should be fully understood. In the present work the supersonic ejector-pump flows with a secondary mass flow were simulated using CFD. A fully implicit finite volume scheme was applied to axisymmetric compressible Navier-Stokes equations. The standard two-equation turbulence model was employed to predict turbulent stresses. The results obtained showed that the flow characteristics of constant area mixing tube types were nearly independent of the secondary flow rate, but the flow fields of ejector system with the second-throat were strongly dependent on the secondary flow rate due to the effect of the back pressure near the primary nozzle exit.

  • PDF

Analysis of Turbulent Flows with Wall Transpiration (벽면을 통한 유체유동을 수반한 난류유동장 해석)

  • 유근종;서영수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.20-35
    • /
    • 1998
  • Characteristics of turbulent flow with wall transpiration is analyzed. The wall transpiration includes both of suction and injection and extends their range to 0~160 of absolute magnitude of Re$_{w}$ . Reynolds number based on inlet velocity also covers wide range of 3${\times}$$10^3$~8${\times}$$10^4$. The turbulent flow with wall transpiration induces change of wall boundary layer and rapid change of turbulent field. This, in turn, leads the change of whole flow field. For predicting this complicated flow field properly, newly modified $\kappa$-$\varepsilon$ model is utilized, which is formed by modifying dissipation rate equation. The modified $\kappa$-$\varepsilon$ model of Chien is also adopted for the comparison of model performance. Analysis shows the newly modified $\kappa$-$\varepsilon$ model is successfully able to reflect the characteristics of turbulent flow field with wall transpiration.ion.

  • PDF

Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade (터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1915-1927
    • /
    • 1992
  • A three-dimensional Navier-Stokes code has been developed for analysis of viscous flows through turbomachinery blade rows or other internal passages. The Navier-Stokes equations are written in a cartesian coordinate system, then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected and turbulent effects are modeled using the baldwin-Lomax model. Equations are discretized using finite difference method on the stacked C-type grids and solved using LU-ADI decomposition scheme. calculations are made for a two-dimensional cascade in a transonic wind-tunnel to see the infuence of the endwalls. The flow pattern of the three-dimensional flow near the endwall is found to be different from that of the two-dimensional flow due to the existence of the endwalls.

Numerical simulation of upper convected maxwell fluid flow through planar 4:1 contraction (평면 4:1 수축을 지나는 어퍼 콘벡티트 맥스웰유체 유동의 수치 시뮬레이션)

  • 송진호;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-169
    • /
    • 1987
  • Numerical simulation of the flow of upper convected Maxwell fluid through planar 4:1 contraction has been performed using type dependent difference apprximation of vorticity equation. For creeping flow assumption, the numerical convergence has been achieved up to much higher values of elasticity parameter than those obtained by conventional finite difference method. For non-vanishing Reynolds number flow, it is shown that the corner vortices disappear, which is in good qualitative agreement with extant experimental results. In doing so, spatial distributions of stream function, vorticity and stresses are considered in relation to change of type of vorticity.

Numerical analysis of cavitation behavior and noise using Eulerian-Lagrangian method (Eulerian-Lagrangian 기법을 이용한 캐비테이션 거동과 소음의 수치적 해석)

  • Seol Hanshin;Park Kwangkun;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.167-170
    • /
    • 2004
  • 본 논문에서는 수중익 버블 캐비테이션과 날개 끝 볼텍스 캐비테이션의 거동 및 소음을 Eulerian-Lagrangian 기법을 이용하여 수치적으로 해석하였다. Eulerian-Lagrangian 기법은 캐비테이션 버블이 유동장에 미치는 영향이 거의 없다는 가정하에 유동장과 캐비테이션 거동을 일방으로 연계하여 해석하는 방식이다. 수중익 버블 캐비테이션 해석을 위한 유동장은 비압축성 RAMS 방정식을 해석하여 구하고 날개 끝 볼텍스 캐비테이션 유동장은 일반적 CFD 기법의 큰 수치 소산으로 그 특성이 잘 나타나지 않으므로 Sculley 볼텍스 모델을 이용하여 해석한다. 해석한 유동장 정보를 입력치로 하고 버블의 지배 방정식인 Rayleigh-Plesset 방정식과 Newton의 제2법칙에 근거한 궤적 방정식을 연계하여 캐비테이션의 성장-붕괴와 운동을 예측한다. 계산된 거동 정보를 이용하여 버블 캐비테이션과 날개 끝 볼텍스 캐비테이션의 소음을 예측하였다. 본 연구는 수중 운동체에서 발생하는 캐비테이션의 거동과 소음의 특성을 파악하고 그에 따른 대비책을 마련하는 기본 연구로서 활용할 수 있을 것이다.

  • PDF

Preliminary Design on Jet Pump for Fuel Transfer and Analysis of Flow Distribution (연료 이송용 제트펌프 기본 설계 및 유동장 해석)

  • Kong Chang-Duk;Park Jong-Ha;Kim Young-Kwang;Han Dong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.125-129
    • /
    • 2006
  • In the present study, preliminary design and analysis of flow distribution for a jet pump, which is able to transfer fuel from the tank to the engine, were performed as an aerospace component technology development project. The jet pump is a core part, which is normally installed in the fuel tank, to supply the fuel from the tank to the engine feed pump, or to transfer the feed between tanks. In order to design preliminarily installed in the jet pump, equations for design were modelled using SIMULINK, and the design was carried out based on the simulation model.

  • PDF

Design of Supersonic Wind Tunnel for Analysis of Flow over a Backward Facing Step with Slot Injection (슬롯 분사가 있는 후향계단 유동장 분석을 위한 초음속풍동 설계)

  • Kim, Ick-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.363-367
    • /
    • 2016
  • A test section of a supersonic wind tunnel was designed for the analysis of flow characteristics over a backward-facing step with Mach 1.0 slot injection in a supersonic flow of Mach 2.5. The cavity flow of a high-speed vehicle is very complex at supersonic speed, so it is necessary to do experiments using supersonic wind tunnels to verify numerical analysis methods. The previous 2D symmetrical nozzle was replaced with an asymmetrical nozzle. The inviscid nozzle contour was designed using Method of Characteristics (MOC), and the boundary layer thickness correction was reflected by experimental data from the wind tunnel. The results were compared with a CFD analysis. The PID control system was changed to be based on the change of tank pressure. This improved the control efficiency, and the run times of supersonic flow increased by about 1 second. The flow characteristics over a backward facing step with slot injection were visualized by a Schlieren device. This equipment will be used for an experimental study of the film cooling effectiveness over a cavity with various velocities, mass flows, and temperatures.

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

Experiment of flow field characteristics around perforated-type fish reef considering reflection coefficient (반사율을 고려한 다공성 인공어초의 유동장 분석(PIV 테스트))

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.280-280
    • /
    • 2019
  • 복잡한 구조의 인공어초는 그 형상에 따라 다양한 유동의 특성을 나타낸다. 이러한 유동장 분석은 여러 방면에서 다양한 실험적 연구가 수행되었으나, 현실적으로 좁은 측정영역 내에서 접촉식 계측장비의 설치가 불가하고 갇혀진 수로 내에서 발생하는 반사파랑의 영향으로 인하여 사실상 정량적인 결과도출이 어려운게 현실이다. 본 연구에서는 2차원 단면실험수로 내에 별도의 소파장치를 고안하여 단위 시간당 발생하는 반사율을 측정하고 그에 따른 인공어초 인근의 유동장의 양상을 검토하였다. 수리모형실험은 1/50의 실험축척을 적용하였으며, 서해의 조석 1주기를 재현함과 동시에 반사파랑을 최소화하기 위하여 동일한 스펙트럼(브렛슈나이더-Mytuyatu spectrum) 조건에서의 입사파랑을 15번 반복적으로 조파하였다. 실험 시 측정된 반사율은 0.05에 해당하며, PIV(Particle Image Velocimerty)시스템을 활용하여 인공어초 내부의 미세유동장을 측정하였다.

  • PDF