• Title/Summary/Keyword: 유동성 시험

Search Result 182, Processing Time 0.035 seconds

A Study on the Formulation Selection of Self Leveling Floor Mortar with Fluidity and Early Strength Improvements (유동성 및 조기강도 확보가 가능한 자기수평 모르타르 배합선정에 관한 연구)

  • Ryu, Hwa-Sung;Kim, Deuck-Mo;Kwon, Seung-Jun;Park, Won-Jun;Shin, Sang-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • The purpose of this study is to develop a floor mortar construction technique which has high strength and inherent mechanical properties and does not cause cracks due to shrinkage after construction. It has been demonstrated that compressive strength, bending strength, flow with floor mortar, and crack reduction performance. As a result, it was confirmed that the developed floor mortar had the same or better performance comparing with the existing foreign products. The results of this experiment can be used as a validation material for high performance and high flowable mortar construction technology with excellent material performance, economical efficiency and construction ability by securing the required performance as floor mortar and selecting the optimal formulation.

An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio (PCC(Powder Compacted Capsule) 크기 및 혼입율에 따른 자기치유 모르타르의 공학적 특성에 관한 실험적 연구)

  • Jae-In, Lee;Chae-Young, Kim;Se-Jin, Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete structures by applying self-healing capsules made of cementitious materials to cement composite materials, the engineering characteristics of mortars according to PCC(Powder Compacted Capsule) size and mixing ratio were compared and analyzed. For this, fluidity, compressive strength, reload test, carbonation, ultrasonic velocity, and water permeability characteristics were measured according to PCC size and mixing ratio of mortar. As a result of the measurement, the fluidity and compressive strength increased as the mixing ratio of PCC increased, and in the case of the load reload test, the healing ratio increased as the mixing ratio of PCC increased in the 03PC formulation. In the case of water permeability test, it was found that when PCC was used, the reduction ratio of water flow was up to 35 % higher than that of Plain, and when PCC with a size of 0.3 to 0.6 mm was mixed with 15 %, it was found to be effective in improving the crack healing ratio of the mortar.

A STUDY ON WEAR RESISTANCE OF FLOWABLE COMPOSITE RESINS (유동성 복합레진의 마모저항성에 관한 연구)

  • Yun, Yeon-Hee;Kim, Jung-Wook;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.217-225
    • /
    • 2002
  • When we use the flowable resin on the primary molars for quick handling, one of the most important property is the wear resistance. This study was performed to compare the wear resistance characteristics of four flowable composite resins [Arabesk flow (group 1), Tetric flow (group 2), Aeliteflow (group 3), Filtek flow (group 4)] to that of one control composite resin [Z100 (group 5)]. Specimen discs(n=10), 10mm wide and 2mm thick, were stored in distilled water at $37^{\circ}C$ for 7 days prior to testing. The specimens were subjected to 50,000 strokes at 2 Hz on the MTS system. During the test, the following parameters were maintained: the lateral excursion at 0.4mm, occlusal force at 2-100N with a force profile in the form of a half sine wave. The measurements of volume loss, depth of wear, and Vicker's hardness number of composite resins, and SEM observations of the polished and abraded surfaces were established. One-way ANOVA and Scheffe's multiple comparison test were employed to detect statistically significant differences among the flowable composite resin groups and the control composite group at P<.05. The following results were obtained: 1. Group 3 showed the least volume loss, while group 4 showed the greatest. The mean volume loss increased in the following order: group 3

  • PDF

Effect of Etching Treatment of Tungsten Sulfide Lubricant on S trength and Life of Diamond Micro-blades (금속 황화물 윤활제의 표면 부식처리가 다이아몬드 블레이드의 기계적 특성 및 절삭 성능에 미치는 영향)

  • Kim, Song-Hui;Jang, Jae-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.324-325
    • /
    • 2012
  • 다이아몬드 마이크로 블레이드의 절삭 효율을 향상시키고 소결 공정 중 윤활제의 유동성과 젖음성이 다이아몬드 마이크로 블레이드의 물성에 미치는 영향을 연구하기 위해 Cu/Sn 금속 결합재에 표면을 부식시킨 $WS_2$와 부식을 시키지 않은 $WS_2$ 윤활제를 각각 동일한 체적 분율로 첨가하였다. 윤활제의 표면 개질에 따른 마이크로 블레이드 결합재의 내마모성과 굽힘 강도 시험을 행하였고, 실착 절삭 시험을 위한 마이크로 블레이드 시편을 제작하여 수명 및 효율을 평가하였다. Cu/Sn 금속 결합재 파면에서의 $WS_2$ 입자 방향 분석을 통해 표면 개질 과정을 거친 $WS_2$가 압축소결 공정 중 압축 방향에 수직하게 위치하려는 경향이 크게 나타났으며, 이는 소결체의 강도와 경도를 향상시켰다. 마이크로 블레이드의 절삭 효율 및 수명을 평가하기 위한 실착 절삭 시험 결과, 윤활제 표면 부식처리는 처리하지 않은 경우에 비하여 절삭성능은 비슷하게 관찰되었으나 결합재와의 계면 결함을 줄이므로써 블레이드의 수명을 연장시킬 수 있었다.

  • PDF

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.

Design and Installation of Full Scale 500kV HVDC Test Line (500kV 가공 직류시험선로 설계 및 구축)

  • Shin, Koo-Yong;Lim, Jae-Seop;Lee, Won-Kyo;Lee, Dong-Il;Hwang, Kab-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.28-30
    • /
    • 2008
  • 본 논문은 국내 실정에 적합한 초고압 가공 직류 송전(HVDC)선로 설계를 위해서 세계적으로 처음 시도되는 가변 기능을 지닌 Proto Type HVDC 실규모 시험선로의 설계와 구축에 대해 소개한다. 시험선로는 초고압 직류송전시 발생하는 이온의 흐름에 의한 이온전류 밀도, 대전 전압, 지표면 전계강도 등 이온류(Ion류(流))에 의한 전기환경장애 및 코로나 영향을 검토하여 환경 친화적 HVDC 송전선로 설계기준을 도출하는데 있다. 이에 따라 HVDC 실규모 시험선로는 요크, 특수 애자련, 특수 arm을 사용하여 철탑의 극간 배치, 도체 배치 변경 및 지상고 변경이 가능하도록 winch를 채용하여 절연설계 조건의 유동성, 환경, 지지물, 송전기자재, 경제성 및 운용의 효율성을 종합적으로 고려할 수 있도록 특수한 형태로 설계되었으며, 본 논문은 상용 가공 HVDC 송전방식의 적용에 앞서 현재의 상황을 고려한 가공 HVDC 실증시험을 수행하기 위한 시험선로의 설계 및 구축에 대하여 기술하였다.

  • PDF

Spar Buoy설치로 "안전항로" 확보

  • O, Je-Bong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.479-487
    • /
    • 2006
  • 우리나라에서는 선박의 항로를 표시하기 위하여 등부표를 설치하여 운영하고 있으나 등부표는 수면하에 침추를 설치하고 체인으로 연결되는 특성으로 인하여 정확한 위치표시가 되지 않아 선박이 항로를 이탈하는 사고가 반발하여, 항해자가 정확한 항행목표를 이용하기어려운 실정에 있어, 이를 개선하기 위하여 시인성과 위치 유동성이 거의 없는 새로운 스파부이 개발방법에 대한 연구와 시험설치 효과를 분석하였다.

  • PDF

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Effect of Fly Ash on Rheology and Strength of Recycled Aggregate Concrete (순환골재와 플라이애쉬가 콘크리트 유동성 및 강도에 미치는 영향)

  • Kim, Kyu-Hun;Shin, Myoung-Su;Kong, Young-Sik;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.241-250
    • /
    • 2013
  • As the amount of construction wastes increase, reuse of demolished concrete is being considered in research areas. Reflecting these interests, this experiment was performed to clarify concrete's mechanical property and workability using recycled aggregate as a coarse aggregate. Eleven cases of concrete specimens were produced by changing the rates of replacement of coarse recycled aggregate, replacement of fly ash, design strength, and moisture state of coarse aggregate. Compressive and tensile split strength tests were taken to study the mechanical properties of hardened concrete. To verify flowability of fresh concrete, a slump test and a flow curve test using ICAR Rheometer were performed. It was found that using recycled aggregate and fly ash leads good workability by testing slump and flow curve. The yield stress of fresh concrete decreased with increase of recycled aggregate substitution rate. Through the test, it was confirmed that there is inversely proportional relationship between the slump and yield stress roughly. Recycled aggregate concrete containing fly ash has considerably lower plasticity viscosity than not containing fly ash. Strength test results showed that recycled aggregate tended to decrease compressive and tensile strength of concrete, when recycled aggregate was used as a coarse aggregate. Using over 30% recycled aggregate caused significant decreases in compressive and tensile strength. Replacing 30% cement with fly ash was helpful to improve the long-term strength of concrete.

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.