• Title/Summary/Keyword: 유동기구

Search Result 150, Processing Time 0.021 seconds

Numerical study on fluid characteristics due to disc shape in a novel mechanical ballast water treatment system (신개념 기계식 선박평형수 처리장치의 디스크 형상에 따른 유동특성에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Kim, Young-Chul;Choi, Kung-Kwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • As the recent regulation of Internaional Maritime Organization (IMO) is enforced, the advanced technology of Ballast water treatment system (BWTS) is needed to meet its requirements. Until now, there are two kinds of the BWTS technologies such as physical methods (Membrane and UV) and chemical methods (Chlorin and Ozone). However, these conventional methods have some limitations of auxiliary power, low productivity, residual treatment and etc. In order to overcome these problems, this paper introduces the new kind of BWTS based on mechanical principle and investigates the effect of rotating disc shapes on flow characteristics between rotating and stationary discs by computational fluid dynamics (CFD). Planar and Step types can make the local cavitation generated along radius, and Circular type can increase the intensity of shear stress.

The Flow Characteristics Around Airfoil Moving Reciprocally in a Channel (수로 내에서 왕복 운동하는 에어포일 주위의 유동특성)

  • Ro, Ki-Deok;Kim, Kwang-Seok;Kim, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.536-541
    • /
    • 2008
  • The Flow characteristics of a ship's propulsion mechanism of Weis-Fogh type, in which a airfoil(NACA0010) moves reciprocally in a channel, were investigated by the PIV. Velocity vectors and velocity profiles around the operating and stationary wings were observed at opening angles of ${\alpha}=15^{\circ}$ and $30^{\circ}$, velocity ratios of $V/U=0.5{\sim}1.5$ and Reynolds number of $Re=0.52{\times}104{\sim}1.0{\times}104$. As the results the fluid between wing and wall was inhaled in the opening stage and was jet in the closing stage. The wing in the translating stage accelerated the fluid in the channel. And the flow fields of this propulsion mechanism were unsteady and complex, but those were clarified by flow visualization using the PIV.

The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection (가상 반사압력을 이용한 사출성형의 준3차원 유동해석)

  • 이호상;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1294-1306
    • /
    • 1992
  • In order to determine the design parameters and processing conditions in injection molding, it is very important to establish the theoretical model with scientific base. In this study, a two dimensional model has been developed for the purpose and flow simulations of filling process are carried out. The moving boundary transient flow problem along the flat plane is solved efficiently by the Iterative Boundary Pressure Reflection Method which rearranges the impinged melt front along the physical boundary in scientific manner. The two dimensional modeling of filling process is applied to two examples : a three dimensional cover with two screw holes and a two-gated flat cavity with unbalanced runners. The numerical results show good agreement with experimental short shots, especially for the weldline locations and the pressure traces at various locations. They also provide the temperature, clamp force, and velocity field in the mold at different times during filling of cavity.

A Theoretical Approach on the Pressure Drop in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 압력강하에 대한 해석적 접근)

  • Kim Seyun;Lee Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • The purpose of this research is to develop the model of pressure drop per unit pipe length due to the turbulence modulations in particle-laden flows which can be applied to various fluid conditions. The wake behind a particle, particle size, loading ratio and density difference between two phases of particle-laden flow was considered. The frictional pressure drop was modeled with the force balance in control volume. The numerical results show good agreements with available experimental data and the model success-fully predicted the mechanism of the pressure drop in particle-laden flows.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Defects Characterization of $Y_{3-3x}Nd_{3x}Al_5O_12$ Single Crystals ($Y_{3-3x}Nd_{3x}Al_5O_12$단결정의 결함 분석)

  • 유영문;김병호
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.67-77
    • /
    • 1994
  • From the Y3-3xNd3xAl5O12single crystals grown by the Czochralski technique, various types of defects were detected and 1) the reason of opical in homogeneous phases, 2) the mechanism of formation of the iridum metal inclusions accompanying bubbles, and 3) the mechanism of formation of the core and facet were analysed After preparing the wafers of the <111> growth parallel, defscts were observed by the polarising microscope using a photoelasic effect and then some images of stress-birefringence were compared to their etch Pits patterns.

  • PDF

Investigation of Skin Friction Reduction Mechanism of Outer-Layer Vertical Blades Using POD Analysis (POD 기법을 이용한 경계층 외부 수직날의 마찰저항 저감 기구에 관한 관측)

  • An, Nam Hyun;Park, Seong Hyeon;Chun, Ho Hwan;Lee, Inwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.567-575
    • /
    • 2013
  • A POD analysis based on time-resolved PIV measurements in a circulating water channel has been conducted to identify the skin friction reduction mechanism of outer-layer vertical blades. A recent PIV measurement indicated 2.73% and 7.95% drag reduction in the blade plane and the blade-in-between plane, respectively. In the present study, the influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by the POD method. It is observed that the vortical structures are cut and deformed by the blades array and that their temporal evolution is strongly associated with the skin-friction drag reduction mechanism in the turbulent boundary layer flow.

An Experimental study on the Characteristics of the Emulsion Lubrication (이멀션윤활특성에 관한 실험적 연구)

  • 이종순;이봉구;정재련;지창헌
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.12-19
    • /
    • 1986
  • Using emulsion lubricant whose cooling effect and incombustibility are good and which is economical, I investigated lubricative mechanism and the behavior of scattered particles in the elastic fluid lubrication region with the line contact between rollers and plates and the light interference system. The results of the study are as follows: (1) The flow in the squeeze oil film is considered as comparatively wide clearance and narrow one, and in the former case the effect of the distribution of particles and the velocity on the flow. In the latter case, emulsion particles stay in the clearance an the oil film changes with the decrease of the oil film thickness. (2) In the wide clearance the velocity difference of the flow O/W or W/O emulsion is inverse proportional to the particle size. In the narrow clearance the distribution of the remained drops is different from one another and the scattered particles change more easily in O/W type than in W/O type. (3) At the beginning of the EHL the stagnation region with slow flowing velocity exists and the behavior at the region is different depending on the particle size. (4) By observing the dischromatic light interference line, emulsion oil passing through EHL region and the crack behavior at the beginning of EHL were found.